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Abstract. We present an efficient algorithm for the confluent hyper-
geometric functions when the imaginary part of b and z is large. The
algorithm is based on the steepest descent method, applied to a suit-
able representation of the confluent hypergeometric functions as a highly
oscillatory integral, which is then integrated by using various quadra-
ture methods. The performance of the algorithm is compared with open-
source and commercial software solutions with arbitrary precision, and
for many cases the algorithm achieves high accuracy in both the real
and imaginary parts. Our motivation comes from the need for accurate
computation of the characteristic function of the Arcsine distribution or
the Beta distribution; the latter being required in several financial ap-
plications, for example, modeling the loss given default in the context of
portfolio credit risk.
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1 Introduction

The confluent hypergeometric function of the first kind 1F1(a; b; z) or Kummer’s
function M(a, b, z) arises as one of the solutions of the limiting form of the

hypergeometric differential equation, z
d2w

dz2
+(b−z)dw

dz
−aw = 0, for b /∈ Z−∪{0},

see [1, §13.2.1]. Another standard solution is U(a, b, z), which is defined by the
property U(a, b, z) ∼ z−a, z → ∞, |ph z| ≤ (3/2)π − δ, where δ is an arbitrary
small positive constant such that 0 < δ � 1. Different methods have been
devised for evaluating the confluent hypergeometric functions, although we are
mainly interested in methods involving their integral representations. As stated
in [1, §13.4.1, §13.4.4], the functions 1F1(a; b; z) and U(a, b, z) have the following
integral representations, respectively

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, <(b) > <(a) > 0 (1)
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U(a, b, z) =
1

Γ (a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt, <(a) > 0, |phz| < 1

2
π (2)

Furthermore, Kummer’s transformations (cf. [1, §13.2(vii)]), can be applied
in situations where the parameters are not valid for some methods, or when the
regime of parameters causes numerical instability,

1F1(a; b; z) = ez 1F1(b− a; b;−z), U(a, b, z) = z1−bU(a− b+ 1, 2− b, z) (3)

In other cases, recurrences relations can be applied (cf. [1, §13.3]). A recent
survey of numerical methods for computing the confluent hypergeometric func-
tion can be found in [9] and [10], where the authors provide roadmaps with
recommendations for which methods should be used in each situation.

2 Algorithm

The presented method for the computation of the confluent hypergeometric func-
tions is based on the application of suitable transformations to highly oscillatory
integrals and posterior numerical evaluation by means of quadrature methods.
Some direct methods for 1F1(a; b; iz) can be applied for moderate values of |=(z)|,
however a more general approach is the use of the numerical steepest descent
method, which turns out to be very effective for the regime of parameters of
interest. First, we briefly explain the path of steepest descent. Subsequently, we
introduce the steepest descent integrals for those cases where |=(b)|, |=(z)| → ∞.

2.1 Path of steepest descent

For this work we consider the ideal case for analytic integrand with no station-
ary points. We follow closely the theory developed in [3]. Let us consider the
oscillatory integral

I =

∫ β

α

f(x)eiωg(x) dx (4)

where f(x) and g(x) are smooth functions. By applying the steepest descent
method, the interval of integration is substituted by a union of contours on the
complex plane, such that along these contours the integrand is non-oscillatory
and exponentially decaying. Given a point x ∈ [α, β], we define the path of
steepest descent hx(p), parametrized by p ∈ [0,∞), such that the real part
of the phase function g(x) remains constant along the path. This is achieved
by solving the equation g(hx(p)) = g(x) + ip. If g(x) is easily invertible, then
hx(p) = g−1(g(x) + ip), otherwise root-finding methods are employed, see [3,
§5.2]. Along this path of steepest descent, integral (4) is transformed to

I[f ;hx] = eiωg(x)
∫ ∞
0

f(hx(p))h′x(p)e−ωp dp

=
eiωg(x)

ω

∫ ∞
0

f

(
hx

(
q

ω

))
h′x

(
q

ω

)
e−q dq (5)
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and I = I[f ;hα]− I[f ;hβ ] with both integrals well behaved. In the cases where
β =∞, this parametrization gives I = I[f ;hα]− 0.

A particular case of interest is when g(x) = x. Then the path of steepest
descent can be taken as hx(p) = x+ ip, and along this path (4) is written as∫ β

α

f(x)eiωx dx =
ieiωα

ω

∫ ∞
0

f

(
α+i

q

ω

)
e−q dq− ie

iωβ

ω

∫ ∞
0

f

(
β+i

q

ω

)
e−q dq (6)

2.2 U(a, b, z), =(z) → ∞

Integral representation (2) can be transformed into a highly oscillatory integral

U(a, b, z) =
1

Γ (a)

∫ ∞
0

e−<(z)tta−1(1 + t)b−a−1e−i=(z)t dt (7)

Taking g(t) = t, g′(t) = 1 6= 0 and there are no stationary points. Therefore, in
this case we only have one endpoint and the steepest descent integral obtained
by (6) is reduced to a single line integral,

U(a, b, z) =
i

ωΓ (a)

∫ ∞
0

e−<(z)i
q
ω

(
i
q

ω

)a−1(
1 + i

q

ω

)b−a−1
e−q dq (8)

2.3 U(a, b, z), =(b) → ∞

In this case, the path of integration is modified to avoid a singularity at t = 0, as
can be seen after performing the transformation to a highly oscillatory integral,

U(a, b, z) =
1

Γ (a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt

=
ez

Γ (a)

∫ ∞
1

e−zt(t− 1)a−1t<(b)−a−1ei=(b) log(t) dt (9)

Now, we solve the path of steepest descent at t = 1 with g(t) = log(t), which
in this case results trivial, h1(p) = elog(1)+ip = eip and h′1(p) = ieip.

Likewise, no stationary points besides t =∞ are present, and therefore there
are no further contributions. The steepest descent integral is given by

U(a, b, z) =
iez

ωΓ (a)

∫ ∞
0

eφ(q,ω)(µ(q, ω)− 1)a−1µ(q, ω)<(b)−a−1e−q dq (10)

where µ(q, ω) = i qω and φ(q, ω) = −zeµ(q,ω) + µ(q, ω)

2.4 1F1(a, b, z), =(z) → ∞

Similarly, we transform integral (1) into a highly oscillatory integral

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b− a)

∫ 1

0

e<(z)tta−1(1− t)b−a−1ei=(z)t dt (11)
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Again with g(t) = t and the transformation stated in (6), we obtain, after some
calculations, the steepest descent integrals given by

1F1(a; b; z) = Γ (b)
Γ (a)Γ (b−a)

i
ω

[ ∫∞
0
e<(z)i

q
ω

(
i qω

)a−1(
1− i qω

)b−a−1
e−q dq

−eiω
∫∞
0
e<(z)(1+i

q
ω )
(

1 + i qω

)a−1(
− i qω

)b−a−1
e−q dq

]
(12)

2.5 1F1(a, b, z), =(b) → ∞

For this case we can use the following connection formula [1, §13.2.41], valid for
all z 6= 0,

1

Γ (b)
1F1(a; b; z) =

e∓πia

Γ (b− a)
U(a, b, z) +

e±πi(b−a)

Γ (a)
ezU(b− a, b, ze±πi) (13)

2.6 Numerical quadrature schemes

Adaptive quadrature for oscillatory integrals. The integrand in (11) can be
rewritten in terms of its real and imaginary parts to obtain two separate integrals
with trigonometric weight functions, the oscillatory factor, given the property,∫ 1

0

f(t)eiωt dt =

∫ 1

0

f(t) cos(ωt) dt+i

∫ 1

0

sin(ωt) dt (14)

Thus, we obtain the following integral representation for 1F1(a; b; z) when
|=(z)| → ∞,

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b− a)

[ ∫ 1

0
e<(z)tta−1(1− t)b−a−1 cos(=(z)t) dt

+ i
∫ 1

0
e<(z)tta−1(1− t)b−a−1 sin(=(z)t) dt

]
(15)

These type of integrals can be solved using specialized adaptive routines, such
as the routine gsl integration qawo from the GNU Scientific Library [2]. This
routine combines Clenshaw-Curtis quadrature with Gauss-Kronrod integration.
Numerical examples can be found in [8], which show that this method works
reasonably well for moderate values of |=(z)|. Unfortunately, this method cannot
be directly applied to U(a, b, z), and Kummer’s transformation [1, §13.2.42], valid
for b /∈ Z, is needed.

Gauss-Laguerre quadrature. An efficient approach for infinite integrals with an
exponentially decaying integrand is classical Gauss-Laguerre quadrature. La-
guerre polynomials are orthogonal with respect to e−x on [0,∞). Hence, using
n-point quadrature yields an approximation,

I[f ;hx] ≈ Q[f ;hx] :=
eiωg(x)

ω

n∑
k=1

wkf

(
hx

(
xk
ω

))
h′x

(
xk
ω

)
(16)
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As stated in [3], the approximation error by the quadrature rule behaves
asymptotically as O(ω−2n−1) as ω → ∞. As an illustrative example, let us
consider the asymptotic expansion for U(a, b, z) when |z| → ∞, which can be
deduced by applying Watson’s lemma [11] to (8),

U(a, b, z) ∼ z−a
∞∑
n=0

(a)n(a− b+ 1)n
n!(−z)n

, |ph z| ≤ 3

2
π − δ (17)

The error behaves asymptotically as O(z−n−1), as notice by truncating the
asymptotic expansion after n terms. Therefore, the asymptotic order of the
Gauss-Laguerre quadrature is practically double using the same number of terms.
A formula for the error of the n-point quadrature approximation (16) is

E =
(n!)2

(2n)!
f2n(ζ), 0 < ζ <∞ (18)

According to this formula and under the general assumption that a, b ∈ R \N, f
is infinitely differentiable on [0,∞), we can use the general Leibniz rule for the
higher derivatives of a product of m factors to obtain the derivative of order 2n,

((f · g) · h)(2n) =

2n∑
j=0

2n−j∑
k=0

(2n)! · f (j)g(k)h(2n−k−j)

j!k!(2n− k − j)!
(19)

where

f(x) = e−<(z)ix/ω, g(x) =

(
1 + i

x

ω

)b−a−1
, h(x) =

(
i
x

ω

)a−1
(20)

and the 2n derivatives are given by

2n∑
j=0

2n−j∑
k=0

(2n)!(−1)j
j!k!(2n−k−j)!

(
<(z)i
ω

)j
e−<(z)ix/ω

(
i
ω

)k
(b−a−1)−k

(
1 + i xω

)b−a−1−k
×
(

i
ω

)2n−k−j

(a−1)−2n+k+j
xa−1−2n+k+j (21)

where (a)n is the Pochhammer symbol or rising factorial. An error bound in
terms of a, b and z might be obtained from (21). Ideally, the error bound shall be
tight enough without increasing the total computation time excessively. However,
as can be seen below, numerical experiments indicate that the number of terms
n rarely exceeds 50 for moderate values of the remaining parameters, typically
if |a|, |b| · 10 < |ω|, for the case U(a, b, iz) or 1F1(a, b, iz). Finally, for large
parameters we apply logarithmic properties to the integrand in order to avoid
overflow or underflow.
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2.7 Numerical examples

In this section, we compare our algorithm (NSD) with other routines in double
precision floating-point arithmetic in terms of accuracy and computation time3.
Note that just a few packages in double precision allow the evaluation of the
confluent hypergeometric function with complex argument. For this study we
use Algorithm 707: CONHYP, described in [6, 7] and Zhang and Jin implemen-
tation (ZJ) in [12]. Both codes are written in Fortran 90 and were compiled using
gfortran 4.9.3 without optimization flags. We implemented a simple proto-
type of the described methods using Python 3.5.1 and the package SciPy [5],
therefore there is plenty of room for improvement, and is part of ongoing work.
Nevertheless, as shown in Table 1, our algorithm clearly outperforms aforemen-
tioned codes, being more noticeable as z increases. In order to test the accuracy,
we use mpmath [4] with 20 digits of precision to compute the relative errors.

1F1(a, b, z) CONHYP ZJ NSD N

(1, 4, 50i) 3.96e−13/4.29e−18i 1.50e−15/4.28e−18i 1.15e−16/1.11e−16i 2
(3, 10, 30 + 100i) 1.27e−13/1.28e−13i 6.83e−17/1.07e−14i 2.48e−17/1.24e−14i 25

(15, 20, 200i) 9.20e−13/9.20e−13i E 8.43e−16/7.93e−16i 25
(400, 450, 1000i) 8.32e−12/1.00e−11i − 1.37e−12/1.02e−13i 50

(2, 20, 50− 2500i) 1.35e−11/1.35e−11i 7.30e−11/2.10e−09i 4.75e−16/6.41e−16i 20
(500, 510, 100− 1000i) 4.10e−13/3.68e−12i − 4.71e−13/3.11e−16i 50

(2, 20,−20000i) − 5.79e−10/7.99e−07i 5.92e−16/3.62e−14i 10
(900, 930,−1010i) − − 6.78e−13/6.77e−13i 20

(4000, 4200, 50000i)∗ − − 6.04e−12/5.99e−12i 80

Table 1. Relative errors for routines computing the confluent hypergeometric function
for complex argument. N : number of Gauss-Laguerre quadratures. (∗): precision in
mpmath increased to 30 digits. (E): convergence to incorrect value. (−): overflow.

Table 2 and Figure 1 summarize the testing results and general performance
of the algorithm for U(a, b, z). As can be observed, 13-14 digits of precision in real
and imaginary part are typically achieved. A similar precision for 1F1(a; ib; z)
is expected. In terms of computational time, we compare our implementation
in Python with MATLAB R2013a. As shown in Table 3, the MATLAB routine
hypergeom is significantly slow for large imaginary parameters.

Function Min Max Mean

U(a, b, iz) 1.97e−18/2.04e−17i 9.97e−13/2.50e−11i 1.34e−14/6.94e−14i
U(a, ib, z) 6.57e−18/6.17e−18i 1.49e−11/8.55e−12i 1.38e−13/1.43e−13i

Table 2. Error statistics for U(a, b, iz) and U(a, ib, z) using N = 100 quadratures.

3 Applications

Besides the necessity of accurate and reliable methods for the regime of pa-
rameters and argument considered, confluent hypergeometric functions can be

3 Intel(R) Core(TM) i5-3317U CPU at 1.70GHz.
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Fig. 1. Relative error in computing U(a, b, z). Error in U(a, b, iz) for a ∈ [2, 400], b ∈
[−500, 500], z ∈ [103, 106] (left) and U(a, ib, z) for a ∈ [10, 100], b ∈ [103, 104], z ∈
[10, 100] (right). 700 and 1400 tests, respectively.

1F1(a; b; z) MATLAB NSD

(2, 20,−20000i) 1.509 (0.068) 0.033
(900, 930,−1010i) 5.594 (0.739) 0.035

(4000, 4200, 50000i) 488.384(18.127) 0.043

Table 3. Comparison in terms of cpu time. MATLAB second evaluation in parenthesis.

encountered in several scientific applications. In this paper, we focus on appli-
cations in statistics, more precisely on the evaluation of characteristic functions,
which can be defined in terms of confluent hypergeometric functions. Character-
istic functions appear in many financial econometric models, for example mod-
elling a beta-distributed loss given default in portfolio credit risk models (see [8,
§4.4.2]). Let us consider three statistical distributions:

– Characteristic function of the Beta distribution.

φX(t) = 1F1(α;α+ β; it) (22)

where α, β > 0. Thereby, the regime of parameters holds for the integral
representation in (12).

– The standard Arcsine distribution is a special case of the Beta distribution
with α = β = 1/2, therefore we obtain a similar characteristic function,
which can be identically computed.

φX(t) = 1F1

(
1

2
; 1; it

)
(23)

– The characteristic function for the F–distribution is defined in terms of the
confluent hypergeometric function of the second kind,

φX(t) =
Γ ((p+ q)/2)

Γ (q/2)
U

(
p

2
, 1− q

2
,−q

p
it

)
(24)

where p, q > 0, are the degrees of freedom. In this case we can use the integral
representation in (8).
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4 Conclusions

We have presented an efficient algorithm for computing the confluent hypergeo-
metric functions with large imaginary parameter and argument, which emerges
as an alternative to asymptotic expansions. The numerical experiments show
promising results and fast convergence as the imaginary part increases. Through-
out this paper we have been considering real values for the remaining parameters,
otherwise the function f becomes oscillatory. The numerical steepest descent
method is not insensitive to oscillations in f , although in some cases this can be
treated by applying other transformations. In cases where that is not possible,
other methods have to be considered. Finally, a suitable integral representation
for |=(a)| → ∞ carry more complications and is part of future work.
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