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Abstract

We describe an algorithm for the numerical evaluation of the generalized expo-
nential integral Eν(x) for positive values of ν and x. A detailed description of the
numerical methods used in the algorithm is provided, including error bounds. Different
approaches from earlier algorithms are also summarised. The performance and accu-
racy of the resulting algorithm is analysed and compared with open-source software
packages. This analysis shows that our implementation is competitive and more robust
than other state-of-the-art codes. Finally, a brief study of the implementation of Eν(x)
in arbitrary-precision arithmetic is discussed.

1 Introduction

The generalized exponential integral is defined by

Eν(x) =

∫ ∞
1

e−xtt−ν dt, ν ∈ R, x > 0. (1)

Another interesting integral representation is given by

Eν(x) = xν−1
∫ ∞
x

e−tt−ν dt. (2)

The generalized exponential integral can also be expressed in terms of the upper and lower
incomplete gamma functions (Γ(a, x) and γ(a, x), respectively) by means of the following
functional relations,

Eν(x) = xν−1Γ(1− ν, x), (3)

Eν(x) = xν−1(Γ(1− ν)− γ(1− ν, x)). (4)

Recently, numerical methods for the evaluation of incomplete gamma functions have
been extensively investigated in [19, 21], therefore those proposed algorithms could be used
when ν < 0. Albeit Equation (3) is being used in several software packages, its direct
application may lead to unsatisfactory results, as will be shown throughout this work. The
main contribution of this paper is a detailed algorithm for the computation of Eν(x) for
real and integer order ν, which avoids recursive calculations and includes new numerical
methods not present in other existing algorithms. These new computation schema are
more efficient and return more accurate results than available software packages in double-
precision floating-point arithmetic.

∗g.navas.palencia@gmail.com
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The function Eν(x), with ν > 0, appears in many fields of physics and engineering,
in particular is of interest its connection with transport theory and radiative equilibrium
[1]. For other values of ν, Eν(x) is encountered in the computation of molecular electronic
integrals in quantum chemistry and wave acoustics of overlapping sound beams. Some well-
known examples are the Schwarzschild-Milne integral equation [6] or the generalization of
Chandrasekhar’s integrals [10]. Besides the applications in physics, the generalized expo-
nential integral arises in several special cases for more difficult special functions, such as the
confluent hypergeometric functions 1F1(a; b;x) and U(a, b, x). For instance, Eν(x) can be
defined in terms of U(a, b, x)

Eν(x) = xν−1e−xU(ν, ν, x) (5)

and using Kummer’s transformation U(a, b, x) = z1−bU(a− b+ 1, 2− b, x) we can write (5)
in the form

Eν(x) = e−xU(1, 2− ν, x). (6)

Moreover, the generalized exponential integral plays an important role in some exponen-
tially improved asymptotic expansions (also known as hyperasymptotic expansions) for the
confluent hypergeometric function U(a, b, x) (U-Kummer function) [31] and [15, §13.7(iii)]

U(a, b, x) = x−a
N−1∑
k=0

(a)k(a− b+ 1)k
k!

(−x)−k +RN (a, b, x) (7)

and

RN (a, b, x) =
(−1)N2πxa−b

Γ(a)Γ(a− b+ 1)

(M−1∑
k=0

(1− a)k(b− a)k
k!

(−x)−kGN+2a−b−k(x)

+ (1− a)M (b− a)MRM,N (a, b, x)

)
, (8)

where M is an arbitrary non-negative integer, and

Gp(x) =
exΓ(p)

2πxp−1
Ep(x), (9)

Gp(x) being the so-called terminant function. Then as |x| → ∞ with a, b and M fixed

RM,N (a, b, x) =

{
O(e−xx−M ), x > 0

O(exx−M ), x < 0
(10)

Finally, for a collection of integrals involving Eν(x), refer to [10, 29] and [15, §8.19(x)].
An extensive study of different methods for the computation of the generalized expo-

nential integral has been carried out by Chiccoli, Lorenzutta and Maino in [7, 8, 9]. The
main method described by the authors, valid for real positive ν and x, is essentially based
on recursive calculations starting from a different series representations for the cases x < 1
and x ≥ 1. This algorithm applies the recurrence

Eν =
1

x
(e−x − νEν+1(x)), (x > 0, ν ∈ R) (11)

and combines Taylor series expansion, series expansion in terms of Tricomi functions and
uniform asymptotic expansion for large ν.

The outline of the paper is the following: in Section 2 we study some of the main numeri-
cal methods considered for the evaluation of Eν(x), including error bounds, and we describe
a new asymptotic expansion along with several improvements for difficult regions of compu-
tation. Then, in Section 3 we review other methods of computation implemented in several
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software packages, focusing in quadrature methods and suitable integral representations. In
Section 4 we present our algorithm and a detailed description of its implementation. After
that, in Section 5 we assess the performance of our algorithm – in terms of relative error and
computation time – and we compare to other publicly available codes. Finally, in Section 6
we present our conclusions.

2 Methods of computation

In this section we provide a detailed description of the methods of computation implemented
in the algorithm, both for the special case ν ≡ n, n ∈ N and the general case ν ∈ R+.

2.1 Special values

Special cases are typically treated separately, here we list some of the most relevant cases:

E0(x) =
e−x

x
, x 6= 0, (12)

which can be used as starting point for recursive evaluation of En(x). For x = 0

Eν(0) =

{
1

ν−1 , ν > 1

∞, ν ∈ (−∞, 1]
(13)

For ν = 1/2 we have the following value, which is also used for recursive evaluation of
half-integers

E 1
2
(x) =

√
π√
x

erfc(
√
x). (14)

Finally, ν = 1, the so-called exponential integral

E1(x) = −Ei(−x), x > 0. (15)

2.2 Series expansions

Series expansions for the generalized exponential integral are commonly used in the domain
|x| . 1. We consider two different series expansions valid when the parameter ν ∈ R \ N.
The first expansion [15, §8.19.10] is given by

Eν(x) = Γ(1− ν)xν−1 −
∞∑
k=0

(−1)kxk

(1− ν + k)k!
, ν ∈ R \ N, x ∈ R \ {0}. (16)

The terms of the series expansion at the origin decrease for |x| < 1, and in practice the
best performance is observed in this region, where fast convergence is experimented. The
series expansion is alternating and hence the computation of such a sum leads to catastrophic
cancellation issues for x > 1, especially in finite precision arithmetic. For x < 0, ν not
being a negative integer, the result is complex. The principal branch of the generalized
exponential integral is defined by taking the principal branch of the natural logarithm in
exp((ν−1) log(x)) = xν−1 (with the logarithm branch cut (−∞, 0)). Along the negative real
axis, the cancellation errors on the power series are removed, although the required number
of terms increases due to slower convergence. For its evaluation, the series is truncated after
a level of precision 2−p (p number of bits) is obtained, therefore it can be written as follows,

Eν(x) = Γ(1− ν)xν−1 −
(N−1∑
k=0

(−x)k

(1− ν + k)k!
+

∞∑
k=N

(−x)k

(1− ν + k)k!

)
. (17)
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For x > 0, Equation (16) is an alternating series and thus the remainder is easily bounded
by the first neglected term, therefore we choose N such that xN/(|1 − ν + N |N !) < 2−p.
For small values of x, the first neglected term tends rapidly to 0 as k → ∞. However, the
required number of terms can grow considerably when x > 1, leading to initial ascending
terms before the series starts to show convergence, which originates a loss of digits due to
roundoff errors.

2.2.1 Series in terms of the confluent hypergeometric function

As previously stated, the generalized exponential integral can be defined in terms of the
confluent hypergeometric function of the first kind, 1F1(a; b;x),

Eν(x) = Γ(1− ν)xν−1 +
1F1(1− ν; 2− ν;−x)

ν − 1
, (18)

where 1F1(a; b; z) is defined as

1F1(a; b; z) =

∞∑
k=0

(a)kz
k

(b)kk!
(19)

for a ∈ C, b ∈ C \ Z−0 and z ∈ C. Series (18) is equivalent to series (16), note that
(1 − ν)k/(2 − ν)k = (1 − ν)/(1 − ν + k). In order to reduce significant cancellation issues,
we apply Kummer’s transformation 1F1(a; b; z) = ez1F1(b−a; b;−z), thus Equation (18) can
be written in this form

Eν(x) = Γ(1− ν)xν−1 +
e−x

ν − 1
1F1(1; 2− ν;x)

= Γ(1− ν)xν−1 +
e−x

ν − 1

∞∑
k=0

xk

(2− ν)k
. (20)

This series expansion turns out to be more numerically stable, especially for small values
of ν, (for ν < 2 all the terms of the expansion are positive), but the convergence is slightly
slower. Similarly to the previous series representation, the number of terms diminish for
|x| < 1. A rigorous error bound for the evaluation of convergent generalized hypergeometric
series pFq(a1, . . . , ap; b1, . . . , bq; z) in devised in [25].

Expansion (20) can be effectively used as an asymptotic expansion for large ν and fixed
x. In fact, note that when ν � x the term Γ(1− ν)xν−1 is not significant compared to the
terms in the finite sum and it can be neglected when less than ν terms are used. As pointed
out by an anonymous referee, when ν = n, n being a large integer, and not many terms are
considered, we can neglect the contribution of Γ(1− ν)xν−1 because it should be combined
with the k = n− 1 term, which gives the term shown in series expansion (38).

2.2.2 Laguerre series

A globally convergent Laguerre series for the incomplete gamma function Γ(a, x) is described
in [22]

Γ(a, x) = xa−1e−x
∞∑
k=0

(1− a)k

(k + 1)!L−ak (−x)L−ak+1(−x)
, (21)

where L−ak (−x) is a generalized Laguerre polynomial. The region of validity of the Laguerre
series is outside the zeros of Laguerre polynomials. Zeros of Lak(x) occur in the interval
x ∈ (0, 4κ) where κ = n + 1

2 (a + 1), so for our region of interest (x > 0 and a = 1 − ν)

L−ak (−x) lies in the monotonic region. As remarked in [4], the Laguerre series for (21) is
closely related to the continued fraction for the incomplete gamma function; see §3.2 for a
comparison to several continued fractions.
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Applying the functional relation (3) in (21) we obtain the Laguerre series for Eν(x),

Eν(x) = e−x
∞∑
k=0

(ν)k

(k + 1)!L
(ν−1)
k (−x)L

(ν−1)
k+1 (−x)

. (22)

This series has two properties that make it very suitable for our regime of parameters: it
does not exhibit cancellations and the error can be made arbitrarily small by increasing the
number of terms (in contrast to asymptotic expansions, which have an optimal value).

The generalized Laguerre polynomials satisfy the three-term recurrence relation

L
(ν−1)
k+1 (−x) =

x+ 2k + ν

k + 1
L
(ν−1)
k (−x)− k + ν − 1

k + 1
L
(ν−1)
k−1 (−x), (23)

which is not ill-conditioned in both backward and forward direction, consequently it is used

with initial values L
(ν−1)
0 (−x) = 1 and L

(ν−1)
1 (−x) = x + ν. Moreover, given the reduced

number of terms needed, the loss of precision is almost negligible. In [4] a sub-exponential
error bound valid for non-negative real x is given for L−ak (−x),

L
(−a)
k (−x) ∼ Sk(a, x)

(
1 +O

(
1

m1/2

))
, (24)

where m = k + 1 and the sub-exponential1 term Sk(a, x) is

Sk(a, x) =
e−x/2e2

√
mx

2
√
πx1/4−a/2m1/4+a/2

. (25)

This error bound results to be particularly effective for large n. For moderate and large
values of ν and/or x in a “medium-precision” range2 the Laguerre series converges after a
small number of terms and thus the error term of the sub-exponential estimate is significant.
We now proceed to calculate approximations for the coefficients of the Laguerre series define
as

Eν(x) = e−x
∞∑
k=0

ak, and ak =
(ν)k

(k + 1)!L
(ν−1)
k (−x)L

(ν−1)
k+1 (−x)

. (26)

For k ≥ 1, √
2πkk+1/2e−k ≤ k! ≤ ekk+1/2e−k,

and given (ν)k = Γ(ν+k)/Γ(ν) the following inequality [27, Theorem 1] holds for Γ(b)/Γ(a)
and b > a > 1,

bb−1

aa−1
ea−b <

Γ(b)

Γ(a)
<
bb−1/2

aa−1/2
ea−b, (27)

so (ν)k/(k + 1)! satisfy

(ν)k
(k + 1)!

< Ck(ν, x) =

(
ν

2π(ν + k)

)1/2
(ν + k)ν+kek+1

νν(k + 1)k+3/2
. (28)

For x � ν we shall use the relation Lν−1k (−x) = (−1)k
k! U(−k, ν,−x) and the property

U(a, b, z) ∼ z−a, z →∞, |ph z| < 3
2π, therefore

L
(ν−1)
k (−x) ∼ Bk(x) =

(x)k

k!
. (29)

Combining (28) and (29) the coefficients ak satisfy

ak ∼ aBk =
Ck(ν, x)

Bk(x)Bk+1(x)
. (30)

1In [4], sub-exponential growth is defined as log log |f(n)| ∼ δ logn, for some 0 < δ < 1.
2We consider medium-precision the range from double precision to up to a few hundred bits of precision.
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When k is small and x . ν, a first order approximation is given by

L
(ν−1)
k (−x) ∼ Ak(ν, x) =

(
k + ν − 1

k

)(
1 +

x

ν

)k
. (31)

Again, combining (28) and (31) we obtain the following approximation for ak

ak ∼ aAk =
Ck(ν, x)

Ak(x)Ak+1(x)
. (32)

Note that approximation Ak(ν, x) indicates that for small values of x, ak ∼ k!/(ν)k+1

and the rate of convergence is generally slow, depending entirely on ν. Therefore, if ν is not
sufficiently large, the method is not fast enough for efficient numerical evaluation.

Table 1 shows the first neglected term aN < 2−53 and the corresponding values for aAN
and aBN . Observe that approximation aAN acts as an upper bound for large ν, whereas tends
to overestimate aN for smaller values. Nevertheless, one could easily devise a heuristic in
order to compensate that overestimation by adding q extra bits such that aN < 2−p−q,
q < p. For large x, aBN bounds aN adequately, but is too conservative when ν > x.

ν x N aN aA
N aB

N

10 10 17 2.84e−17 3.48e−19 3.99e+00
100 10 10 2.9e−17 2.15e−16 5.66e+06
10 100 6 4.14e−18 3.67e−19 2.63e−17
100 100 7 1.32e−17 1.18e−17 6.26e−13
500 500 5 3.69e−18 3.69e−18 7.94e−15
500 100 6 8.28e−18 8.94e−17 1.17e−07
100 500 5 3.38e−19 2.89e−19 2.75e−18

10000 10 4 2.38e−19 2.44e−19 2.44e+08
10 10000 2 2.19e−18 1.55e−18 2.26e−18

Table 1: Approximation terms aN .

In practice, these approximations along with double-precision arithmetic are used to
select N using linear search or by inverting these approximations in function of N . This
approach is particularly useful in arbitrary-precision interval arithmetic.

2.2.3 Taylor series for 1 ≤ x < 2

As previously stated, the series expansions for x > 1 exhibit cancellation issues, therefore
other methods need to be used, especially if the working precision cannot be increased to
compensate the bad condition number of the series. Henceforth we fix the working precision
at 53-bit. For values of x such that x ∈ [1, 2), we consider the following Taylor series
described in [7]

Eν(x− y) =

∞∑
k=0

yk

k!
Eν−k(x), x > 0, (ν, y) ∈ R, (33)

which is obtained from the Taylor series [7, (10)]

Eν(x− y) =

∞∑
k=0

(−y)k

k!

[
dk

dxk
Eν−k(x)

]
,

making use of the following differential formula [7, (11)]

dk

dxk
Eν(x) = (−1)kEν−k(x).
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The Taylor series truncated at k = N is given by

Eν(x− y) =

N−1∑
k=0

yk

k!
Eν−k(x) +

∞∑
k=N

yk

k!
Eν−k(x). (34)

Proposition 2.1 Given ν ≥ 1, x > 0 and positive integer N , such that bν + x − 1c > N ,
the remainder of the Taylor series in (34) for |y| ≤ 1 satisfies

∞∑
k=N

yk

k!
Eν−k(x) <

4e−xbν + x− 1c
x

|y|N
N !

. (35)

Proof: Starting with the integral definition (2), it immediately results that the generalized
exponential integrals is monotonic increasing as ν → −∞, satisfying the inequality Eν(x) >
Eν+1(x). This implies that

Er(x) ≤ E0(x) =
e−x

x
, r ∈ [0,∞).

With the assumption bν + x − 1c > N and using the well-known upper bound for the
generalized exponential integral in this domain, the following inequality holds

Eν−k(x) ≤ e−x

ν + x− k − 1
<
e−x

x
.

Hence,
∞∑
k=N

yk

k!
Eν−k(x) <

bν + x− 1ce−x
x

∞∑
k=N

yk

k!
.

Thus it remains to bound the series expansion. By observing that
∑∞
k=N y

k/k! is equiva-
lent to the remainder term after truncating the Taylor series of ey, we can use the well-known
upper bound for |y| ≤ 1

∞∑
k=N

yk

k!
≤ 4

yN

N !
.

Finally, combining both bounds the upper bound for the remainder is obtained. �
By using bound (35) we can determine the required number of terms N in order to

target a level of precision 2−53. For x→ 1 and y → −1, N = 20 terms suffice, meaning that
ν & 21; see Figure (1) (left). This constraint demands the use of recurrence relations for
smaller values of ν. For example, we can use the following recursion after increasing ν

Eν−n(x) =
(1− ν)n
xn

(
Eν(x) + e−x

n−1∑
k=0

xk

(1− ν)k+1

)
, n ∈ N. (36)

Furthermore, by using recursion (36), this method can be applied for ν < 0. Regarding
the finite series in (36), for ν − n > 0 the minimum value occurs for k ∼ ν; see Figure (1)
(right). In order to evaluate Eν−k(x) we make use of the recurrence relation [15, §8.19.12]

Eν(x) =
1

x
(e−x − νEν+1(x)). (37)

Hence, we just need to compute the first Eν(x) (k = 0), in N1 terms, and for x → 1 and
ν ≈ 21 we require N2 = 18. Thus, when x−y ≈ 2, this algorithm would require N1+N2+N3

terms, where N3 is the number of recursions in (36). For implementation purposes, a simple
choice x = −y = (x−y)/2 works well, although an iterative procedure could optimize3 these
parameters.

3The optimal choice arises as a solution of a non-convex mix integer nonlinear programming problem,
which is prohibitively expensive to compute.
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Figure 1: Plot of the absolute and relative errors of E21.05(1.98) and error bound (35) for
N ∈ [1, 20] (left). Plot of |xk/(1− 21.05)k+1|, x = 2 for k = [1, 40] (right).

2.2.4 Series expansions: special cases

Previous series expansions, excepting Laguerre series, cannot be used for integer ν. For this
special case we introduce two series expansions, see [15, §8.19]:

Case: n ∈ N

En(x) =
(−x)n−1

(n− 1)!
(ψ0(n)− log(x))−

∞∑
k=0, k 6=n−1

(−x)k

k!(1− n+ k)
, (38)

where ψ0(t) is the digamma function, which for integer t = n is denoted as

ψ0(n) = −γ +

n−1∑
k=1

1

k
= −γ +Hn−1,

where γ is the Euler-Mascheroni constant and Hn is a harmonic number. Alike the series
expansions (16) and (20), this series performs better for x < 1. Other series expansion in
terms of the exponential integral E1(x) (also known as Theis well function) is given by

En(x) =
(−x)n−1

(n− 1)!
E1(x) +

e−x

(n− 1)!

n−2∑
k=0

(n− k − 2)!(−x)k

=
(−x)n−1

(n− 1)!
E1(x) + e−x

n−2∑
k=0

(n)−k−1(−x)k. (39)

Case: n+ 1
2 , n ∈ N

En+ 1
2
(x) =

(−1)n
√
π xn−

1
2

(1/2)n
erfc(
√
π)− e−x

n−1∑
k=0

xk

(1/2− n)k+1
. (40)

This series expansion for half-integers is used for moderate values of n and small x in order
to reduce the effect of cancellation.

Case: n+ ε, n ∈ N: A difficult case arises when ν = n+ ε, |ε| � 1, for small values of x,
say x . 2. A direct evaluation of series expansion (16) leads to significant loss of precision
both in the series expansion and Γ(1 − n − ε)xn−1+ε. Moreover, final subtraction of both
terms incurs in catastrophic cancellation, since both are of large magnitude. To deal with
this issue, series expansion (16) is also implemented in quadruple precision (128-bit) using
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the libquadmath4 library. Our implementation includes two interfaces: expint(const int

vi, const double vf, const double x) and expint(const double v, const double

x), where vi and vf (|vf| < 0.5) denote the integral and decimal fractional part of ν,
respectively. A unique interface passing ν = n + ε produces a similar loss of precision,
even splitting ν using functions such as std::modf in C++. Two relevant examples using
a double precision (53-bit) implementation: ν = 2 + 1e−14 and x = 1e−10 returns a result
with relative error 1.6e-12, whereas ν = 1 − 1e−13 and x = 1e−01 has a relative error
6.5e-06. An implementation in quadruple precision returns an relative error below 2−53.

In terms of performance, quadruple precision is about 10 ∼ 15 times slower. Although
other approaches are possible, in our experience, quadruple precision is indispensable to
return reliable results in this regime of parameters.

2.3 Asymptotic expansions

2.3.1 Large x and fixed ν

Asymptotic expansions for Eν(x) as x→∞ can be derived from the integral representation
in Equation (2)

Eν(x) = xν−1
∫ ∞
x

e−tt−ν dt = e−x
∫ ∞
0

e−xt(1 + t)−ν dt. (41)

The transformation gives a Laplace integral and Watson’s lemma [33] can be applied, ob-
taining the following asymptotic expansion

Eν(x) ∼ e−x
∞∑
k=0

(−1)k(ν)k
xk+1

, x ∈ R. (42)

The remainder εN (x) of the expansion after truncation can be written as follows,

Eν(x) = e−x

(
N−1∑
k=0

(−1)k(ν)k
xk+1

+ εN (x)

)
. (43)

For x > 0, the asymptotic series is alternating, and as previously stated, the remainder can
be bounded by the absolute value of the first neglected term,

|εN (x)| ≤
∣∣∣∣ (ν)N
xN+1

∣∣∣∣. (44)

As pointed out in §2.2.2, in asymptotic expansions the remainder cannot be reduced
arbitrarily as N → ∞, in fact, given ν and x, bound (44) first decreases until an optimal
value of terms Nmax = dx−νe is reached. Subsequent N > Nmax increase the bound. Thus,
linear search is performed up to a limit N ≤ Nmax, without guarantee of finding N such that
εN (x) < 2−p. Hence, when x (x > 1) is not large enough with respect to ν and the required
precision bits is moderate/high, this asymptotic expansion cannot be used effectively. For
an exponentially-improved asymptotic expansion see [15, §2.11(iii)].

2.3.2 Large ν

A uniform asymptotic expansion when both ν and x are large is introduced in [18]. Using
the definition in [15, §8.20(ii)], the expansion is given by

Eν(x) ∼ e−z

x+ ν

∞∑
k=0

Ak(λ)

(λ+ 1)2kνk
, (45)

4There seems to be a bug in libquadmath for tgammaq and lgammaq. It returns incorrect signs when
ε < 1e− 6. This was fixed in our implementation.
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where λ = x/ν. The coefficients Ak(λ), starting with A0(λ) = 1, can be computed using
the recursion

Ak+1(λ) = (1− 2kλ)Ak(λ) + λ(λ+ 1)
dAk(λ)

dλ
, k = 0, 1, 2, . . . (46)

and the degree of Ak(λ) is k − 1 when k ≥ 1. In particular, the first 8 coefficients are

A0(λ) = 1,

A1(λ) = 1,

A2(λ) = 1− 2λ,

A3(λ) = 1− 8λ+ 6λ2,

A4(λ) = 1− 22λ+ 58λ2 − 24λ3,

A5(λ) = 1− 52λ+ 328λ2 − 444λ3 + 120λ4,

A6(λ) = 1− 114λ+ 1452λ2 − 4400λ3 + 3708λ4 − 720λ5,

A7(λ) = 1− 240λ+ 5610λ2 − 32120λ3 + 58140λ4 − 33984λ5 + 5040λ6.

Remark 2.2 It is not hard to observe that polynomials Ak+1(λ) computed via recursion in
(46) can be obtained for k ≥ 2 using the series

Ak+1(λ) = 1 +

k−1∑
j=1

(aj + bj−1 + bj − 2kaj−1)λj + (bk−1 − 2kak−1)λk, k ≥ 2

where a0 = 1, b0 = 0 and a1 = b1 = −2. aj are the coefficients of each polynomial Ak(λ)
and bj are the coefficients of their corresponding derivatives. Given the relation bj = jaj,
the above series can be simplified

Ak+1(λ) = 1 +

k−1∑
j=1

{aj(j + 1) + (j − 1− 2k)aj−1}λj + {(k − 1− 2)kak−1}λk, k ≥ 2 (47)

Remark 2.3 Ak(λ) is an Eulerian polynomial of second kind defined by

Ak(λ) =

k∑
m=0

(−1)m
〈〈

k

m

〉〉
λm, (48)

where
〈〈

k
m

〉〉
are second-order Eulerian numbers5, defined by the recursion equation〈〈

k

m

〉〉
= (m+ 1)

〈〈
k − 1

m

〉〉
+ (2k −m− 1)

〈〈
k − 1

m− 1

〉〉
, (49)

with
〈〈

k
0

〉〉
= 1 and

〈〈
k
m

〉〉
= 0 for m ≥ k.

The remainder after truncating the series εk(ν, x) satisfies

εk(ν, x) ≤ Ck
(

1 +
1

x+ ν − 1

)
1

νk
. (50)

Gautschi in [18] provides rigorous bounds for εk(ν, x), k ≤ 7. This uniform asymptotic
expansion proves to be very powerful in a wide domain, λ ∈ [0,∞). However, each term
Ak(λ) requires the construction of a polynomial and its evaluation, which increase the com-
putational time substantially and requires to keep k − 1 temporary coefficients in cache,

5https://oeis.org/A008517
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which may make it unattractive for arbitrary-precision arithmetic. Nonetheless, for a fixed
precision (e.g., 53-bit or 113-bit) one can precalculate as many polynomials as needed6. We
use Horner’s scheme for evaluating the polynomials Ak(λ) for k ≥ 3 to reduce the number
of multiplications. Furthermore, we use compensated summation algorithms to minimize
roundoff errors.

2.3.3 Large ν and fixed x

We introduce an asymptotic expansion which can be used effectively for ν � x. The
coefficients of the asymptotic expansion have a relatively simple representation, in contrast
to the previous uniform asymptotic expansion. We start with the integral representation∫∞
1
e−xut−ν du applying a change of variable et = φ(u) = 1 + u to obtain

Eν(x) = e−x
∫ ∞
0

e−νtf(t) dt, f(t) = et−x(e
t−1).

f(t) is analytic in [0,∞) and for x > 0 the integral is convergent, therefore we can apply
Watson’s lemma, obtaining the following asymptotic expansion

Eν(x) ∼ e−x
∞∑
k=0

ck
k!

νk+1
, ν →∞, f(t) =

∞∑
k=0

ck(x)tk, (51)

where ck denote the coefficients of the Maclaurin expansion. The function f(t) is a product
of two exponential functions, which exponential generating functions are defined by

et =

∞∑
k=0

tk

k!
, e−x(e

t−1) =

∞∑
k=0

Bk(−x)

k!
tk, (52)

where Bk(x) are the Bell polynomials. The Bell polynomials have an explicit formula in
terms of Stirling numbers of the second kind denoted as S(k, j) and an infinite series known
as Dobiński’s formula, respectively

Bk(x) =

k∑
j=0

S(k, j)xj , Bk(x) = e−x
∞∑
j=0

jk

j!
xj . (53)

The coefficients ck are combinations of the coefficients in both exponential generating
functions in Equation (52), thus we obtain

ck =

k∑
j=0

1

j!

Bk−j(−x)

(k − j)! =
1

k!

k∑
j=0

(
k

j

)
Bk−j(−x). (54)

Let us define the coefficients dk = ckk!. We observe that dk is a recurrence formula for Bell
polynomials given by Bn(x) = x

∑n
k=1

(
n−1
k−1
)
Bk−1(x), with B0(x) = 1. Consequently, the

coefficients dk have the following representation, dk = −Bk+1(−x)/x. Substituting these
coefficients in Equation (51), the asymptotic expansion may be written in this form

Eν(x) ∼ e−x

ν

∞∑
k=0

dk
νk

= −e
−x

x

∞∑
k=0

Bk+1(−x)

νk+1
, ν →∞. (55)

Note that the computation of Bell polynomials with negative argument x leads to sub-
stantial cancellation due to the evaluation of large magnitude alternating terms. In order

6Auxiliary data can potentially compromise thread safety in a multiple processor configuration, therefore
it is convenient to avoid its usage.
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to guarantee the required accuracy, the working precision needs to be increased to at least
the exponent of the largest term involved.

Table 2 shows the required number of terms k to satisfy |Bk+1(−x)|/νk+1 < 2−53 for
several values of ν and x when ν � x. Numerical experiments reveal that for moderate x
not more than roughly 30 terms are needed when ν/x & 3.

ν x terms ν x terms
20 2 28 1000 200 22
50 10 20 2000 40 10
100 30 21 5000 600 18
500 50 15 5000 10 6

Table 2: Minimum number of terms k to satisfy |Bk+1(−x)|/νk+1 < 2−53 for the asymptotic
expansion (55).

To determine the number of terms k needed to achieve a required precision 2−p, it is
practical to have an upper bound of the truncated term |Bk+1(−x)|/νk+1, particularly to
decide whether the asymptotic expansion can be used. In what follows, we proceed to
derive an effective upper bound for Bell polynomials for x ∈ R. In fact, by using Dobiński’s
formula, the computation of Bk(x) generalizes to k, x ∈ C, and so thus our upper bound.

An integral representation for Bell polynomials is obtained by direct application of
Cauchy’s integral formula to the exponential generating function with a parametrization
z(t) = eit, t ∈ [0, 2π]

Bn(x) =
n!

2πi

∫
C

ex(e
z−1)

zn+1
dz =

n!

2π

∫ 2π

0

ex(e
eit−1)e−int dt . (56)

Equivalent formulas are given by

Bn(x) =
n!

π
<
(∫ π

0

ex(e
eit−1)e−int dt

)
=

n!

πex

∫ π

0

ex(e
cos(t) cos(sin(t))) cos(nt− x sin(sin(t))ecos(t)) dt,

where the latter integrand is the real part of ex(e
eit )e−int. In order to compute an effective

upper bound for Bn(x) we develop a saddle-point bound7 [5]. Let us define the function
g(t) representing the integrand in Equation (56) and its derivative with respect to t,

g(t) = ex(e
eit−1)−int, g′(t) = ex(e

eit−1)−int(ixeit+e
it − in). (57)

The saddle-point t0 is the point such that g′(t0) = 0, which is given by

t0 = −i(log(n/x)−W (n/x)), (58)

where W (x) is the Lambert-W function which solves W (x)eW (x) = x. Substituting t0 in
g(t) we obtain the principal contribution of the bound. It remains to compute the term λ
representing the length of the path of the contour joining [0, 2π] through t0 that minimizes
|g(t0)|

|g(t0)| =
∣∣∣∣ n!

2πex
exe

W (n/x)

W (n/x)n

∣∣∣∣, λ = |0− t0|+ |2π − t0|. (59)

Thus, the resulting upper bound for the Bell polynomials is given by

|Bn(x)| ≤ λ
∣∣∣∣ n!

2πex
exe

W (n/x)

W (n/x)n

∣∣∣∣, (60)

7Saddle-point bound: |
∫B
A f(t) dt | ≤ |C0||f(t0)|, f ′(t0) = 0. |C0| are saddle-point paths made of arcs

connecting A and B through the saddle-point t0.
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which as aforementioned can be generalized replacing the factorial by the gamma function.
Table 3 shows the closeness of the upper bound (3) for moderate and large values of n ∈ N
and x ∈ R.

n x |Bn(x)| Bound (60) n x |Bn(x)| Bound (60)
30 20 4.01e+44 7.65e+45 30 -20 1.38e+33 1.69e+35
10 200 1.27e+23 1.66e+24 100 -200 8.12e+22 8.66e+23
500 1000/3 1.53e+1356 1.19e+1358 500 -1000/3 1.16e+1179 5.36e+1180

Table 3: Upper bound for Bell polynomials Bn(x) for x ∈ R.

For x = 1, Bn(1) = Bn is the nth Bell number8. As shown in Table 4, in turns out that
bound (60) is sharper than other upper bounds for Bell numbers recently established in [2],
especially for moderate and large n, and given by

Bn <

(
0.792n

log(n+ 1)

)n
(61)

n Bn Bound (61) Bound (60) n Bn Bound (61) Bound (60)
50 1.9e+47 1.4e+50 7.7e+48 1000 3.0e+1927 2.1e+2059 7.7e+1929
100 4.8e+115 2.9e+123 3.0e+117 10000 1.6e+27664 2.8e+29344 1.6e+27667
500 1.6e+843 1.2e+902 2.7e+845 100000 1.0e+364471 8.2e+383753 3.8e+364474

Table 4: Upper bound for Bell numbers Bn.

3 Other numerical methods

This section presents other numerical methods for the evaluation of the generalized exponen-
tial integral. Several of these numerical methods are used in other available implementations,
even though we do not employ them in our proposed algorithm in Section 4, due to the exis-
tence of more robust and/or faster methods in the same domains of computation introduced
in Section 2.

3.1 Factorial series

Factorial series are considered an alternative for the summation of divergent inverse power
series. The method is a useful numerical tool that can be used for functions defined in terms
of Laplace integral, for example integral (41), with which we proceed by applying a change
of variable e−t = w and ϕ(w) = (1− log(w))−ν to transform into a convergent expansion

Eν(x) = e−x
∞∑
k=0

akk!

(x)k+1
, ϕ(w) =

∞∑
k=0

ak(1− w)k, (62)

where ak are the coefficients of the Maclaurin series of ϕ(w) at w = 1. In particular, the
first 7 coefficients are

a0 = 1, a1 = −ν, a2 =
1

2
ν2, a3 = −1

6
ν(ν2 + 1), a4 =

1

24
ν(ν3 + 4ν − 1),

a5 = − 1

120
ν(ν4 + 10ν2 − 5ν + 8), a6 =

1

720
ν(ν5 + 20ν3 − 15ν2 + 58ν − 26).

This factorial series exhibits fast convergence for moderate values of ν and x when
x > ν, and it generally outperforms the asymptotic expansion. However, Laguerre series
(22) tends to converge more rapidly, whereby factorial series was not included in the proposed
algorithm. For an introduction to factorial series we refer to [20, §2.4.4].

8Bell numbers represent the number of class-partitions of a finite set with n elements.
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3.2 Continued fractions

The Stieltjes fraction (S-fraction) [13, §14.1.16] is given by

Eν(x) = e−x

(
1/x

1 +

∞

K
m=2

(
am/x

1

))
, x > 0, ν ∈ R+, (63)

where a2j = j + n − 1, a2j+1 = j, j ≥ 1. Since limm→∞ am = +∞, the modification [13,
§7.7]

w2k(x) =
−1 +

√
4kx−1 + 1

2
, w2k+1(x) =

−1 +
√

4(n+ k)x−1 + 1

2
. (64)

The S-fraction is evaluated using a forward recursion algorithm based on the three-
term recurrence relations. This algorithm requires successive rescaling to avoid numerical
difficulties. Cephes library implementation includes the S-fraction for the domain x > 1 and
ν ≤ 5000, without modification.

The C-fraction [13, §14.1.19] is given by

Eν(x) = e−x
∞

K
m=1

(
am(ν)x−1

1

)
, x > 0, ν ∈ C, (65)

where the coefficients are given by

a1(ν) = 1, a2j(ν) = j + ν − 1, a2j+1(ν) = j, j ∈ N. (66)

The Jacobi fraction (J-fraction) [13, §14.1.23], obtained by taking the even part of the
C-fraction is given by

Eν(x) = e−x

(
1

ν + x+

∞

K
m=2

(
(1−m)(ν +m− 2)

ν + 2m− 2 + x

))
, x > 0, ν ∈ C. (67)

The C-fraction and J-fraction are evaluated using the modified Lentz algorithm, which
is implemented taking into account the suggestions in [20, §6.6.2] to improve numerical
robustness. Table 5 shows the number of terms and relative error for each continued fraction
for regions where asymptotic expansions do not apply due to the amount of terms required.
The last column corresponds to the Laguerre series.

ν x (65) (67) (63) (22)
2.3 1.6 142 (0) 63 (9e−16) 117 (0) 67 (0)
0.3 5.6 52 (9e−16) 23 (9e−16) 41 (3e−16) 21 (0)
10.3 15.6 32 (4e−16) 16 (1e−16) 28 (1e−16) 14 (1e−16)
100.3 15.6 26 (7e−16) 13 (3e−16) 25 (1e−16) 10 (4e−16)
10.3 150.6 14 (7e−16) 8 (0) 13 (2e−16) 6 (2e−16)
100.3 150.6 18 (1e−16) 10 (1e−16) 17 (1e−16) 7 (1e−16)

Table 5: Comparison of different continued fractions and Laguerre series, number of terms
and relative errors. Precision is set to 53-bit.

The results confirm the significant superiority of the Laguerre series with respect to both
C-fraction and S-fraction. On the other hand, the J-fraction exhibits rapid convergence, but
some loss of precision is observed for small values of ν and x. We refer the reader, e.g., to
Cuyt et al. [13] for a theoretical background and numerical methods for continued fractions.
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3.3 Numerical integration

From the definition of the generalized exponential integral (2), we apply a change of variable
t = x+ q to obtain

Eν(x) = xν−1e−x
∫ ∞
0

e−q(x+ q)−ν dq, (68)

which can be directly evaluated by means of Gauss-Laguerre quadrature. Furthermore, the
integrand has the decay property as a single exponential function q → ∞, therefore we
can exploit this by applying a double-exponential transformation (DE-transformation) to
an integral over a half-infinite interval. Then,

Eν(x) = xν−1e−x
∫ ∞
−∞

e−φ(t)(x+ φ(t))−νφ′(t) dt, (69)

where q = φ(t) = e−t−e
−t

, and φ′(t) = (1 + e−t)φ(t). Another possible change of variable is
φ(t) = π/2 sinh(t) and φ′(t) = π/2 cosh(t)φ(t), although the latter does not provide better
results in our experiments. We truncate the infinite summation at k = −n and k = n, where
the total number of function evaluations is N = 2n+ 1 using the trapezoidal rule with equal
mesh size,

Eν(x)(n,h) = xν−1e−xh

n∑
k=−n

e−φ(kh)(x+ φ(kh))−νφ′(kh). (70)

Two methods of computation are used for the evaluation of above integrals; the extended
trapezoidal rule and Ooura’s implementation for DE-transformation over half-infinite inter-
val [32]. For the extended trapezoidal rule we use symmetric truncations at ±6, which
performs well for moderate values of ν and x.

3.3.1 Other integrals

The integral in §2.3.3, can be computed effectively using numerical quadrature methods,
since the integrand decays exponentially for ν and double exponentially for z. If we start
with λ = x/ν, where λ > 0, we can write the integral as follows

Eν(x) = e−x
∫ ∞
0

e−νλt(1 + t)−ν dt . (71)

Now by applying a change of variable eu/λ = φ(t) = 1 + t, eu/λ du = dt we obtain

Eν(x) = λν−1
∫ ∞
log(λ)

e−νe
u

e−u(ν−1) du, (72)

where the integrand only depends on ν and it is entirely non-increasing. Our experimen-
tal results showed that computing these integrals by using the extended trapezoidal rule
was 1.5-4 times slower than other available methods in the same domain of computation,
consequently these were discarded.

4 Algorithm and implementation

We have devised an accurate algorithm along with an efficient implementation in double-
precision floating-point arithmetic of Eν(x) for integer and real order ν. The program9

written in C++ is about 800 lines of code and includes python bindings. It is released under
MIT licence.

Our implementation allows the use of internal computations using higher precision arith-
metic implemented in software, in particular we use the so-called error free transformations

9https://sites.google.com/site/guillermonavaspalencia/software/expint.zip
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and double-double numbers, for difficult regions prone to numerical instability, thus dimin-
ishing the effect of round off errors. This approach is particularly intended for the evaluation
of series expansions, where cancellation errors in the regime x ∈ [1, 1.5) occur.

A double-double (DD) number is a multiple-term representation in which a number is
expressed as the unevaluated sum of two standard floating-point (FP) numbers. The DD
number is capable of representing at least 106-bit of significant, roughly 31 digits of accuracy
and is, therefore, similar to IEEE 754 quadruple-precision. A reference library using this
approach is Bailey’s library10 QD [23]. There are several reasons for using DD numbers
instead of quadruple-precision (e.g., using libquadmath included in GCC): operations with
DD numbers use highly optimized hardware implementation of floating-point operations,
and quadruple-precision is still not available for all compilers and programming languages,
which would limit the implementation of the algorithm.

An error free transformation (EFT) is an algorithm which transforms any arithmetic
operation of two FP numbers a and b into a sum of two FP numbers s and t, a floating-
point approximation and an exact error term, respectively. Therefore, these algorithms keep
track of all accumulated rounding errors, avoiding the lost of information. The basic brick
for our implementation is Algorithm 3. This algorithm requires Algorithm 1 [28], which
computes the exact sum of two FP numbers and returns the result under s and t. It requires
6 native FP operations (flops).

Algorithm 1 Error-free transformation of the sum of two floating-point numbers.

Input: a, b
Output: s, t

1: function TwoSum(a, b)
2: s← RN(a+ b) . RN: Rounding to nearest mode.
3: c← RN(s− a)
4: t← RN(RN(a− RN(s− c)) + RN(b− c))
5: end function

Furthermore, it also uses Algorithm 2 [14], requiring 3 flops. This algorithm is applicable
when the exponent of a is larger or equal to that of b.

Algorithm 2 Error-free transformation of the sum of two floating-point numbers (|a| ≥ |b|).
Input: a, b
Output: s, t

1: function FastTwoSum(a, b)
2: s← RN(a+ b)
3: z ← RN(s− a)
4: t← RN(b− z)
5: end function

Algorithm 3 computes the exact sum of a DD number and a FP number, storing the
resulting operation into the DD number, performing an operation in-place. This algorithm
is used to accumulate the intermediate summation of terms in series expansions (16), (20)
and (38) and for the final subtraction or addition operation. Although the use of EFTs for
every single operation would definitely enhance the accuracy of the algorithm, we aim to
provide a good balance between achievable accuracy and computational time, so that our
implementation is competitive with other software packages only using FP operations. Other
alternatives to reduce cancellations consist of grouping two consecutive terms in descending
order, so the subtraction of the second term does not produce cancellation. However, given
the satisfactory results obtained with EFTs, we discarded those methods.

10The operations implemented in this library are not compliant with the IEEE 754-2008 standard.
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Algorithm 3 Addition of a double-double number and a double number in-place.

Input: sh, sl, a
Output: sh, sl

1: function Add dd d ip(sh, sl, a)
2: (th, tl)← TwoSum(sh, a)
3: tl← RN(th+ tl)
4: (sh, sl)← FastTwoSum(th, tl)
5: end function

Finally, our algorithm uses some mathematical functions from the standard library de-
fined in <cmath>, for instance tgamma and lgamma, which compute the gamma function and
the natural logarithm of the absolute value of the gamma function, respectively.

4.1 Algorithm for integer order

The algorithm of integer order ν ≡ n, n ∈ N combines asymptotic expansions, Laguerre
series, series expansions and Chebyshev approximations. Laguerre series is the dominant
method for x > 2 and it is used as a backup method wherever asymptotic expansions are not
applicable. For small x series expansions are employed, since they show faster convergence
and return more accurate results than Laguerre series. For the special case n = 1 we use
the Chebyshev approximations in [11], which require fewer terms and provide more accurate
results for moderate values of x. Note that we avoid the evaluation of Ei(−x) in the vicinity
of x0 ≈ −0.372507, which corresponds to a single zero.

Algorithm 4 Algorithm for En(x), n ∈ N and x > 0

Input: n ∈ N, x ∈ R
Output: En(x)

1: if n == 1 and x ∈ (0.9, 10) then
2: compute E1(x) = −Ei(−x) using Chebyshev approximations [11]
3: else if x ≤ 1.5 and n < 20 then
4: series expansion (38)
5: else if x ≤ 2.0 and n ≤ 10 then
6: series expansion (39) . Faster than Laguerre series
7: else if n ≥ x then
8: if x < 5 then
9: check if asymptotic expansion (55) can be used, otherwise Laguerre series (22)

10: end if
11: Laguerre series (22) . Backup method
12: else
13: if x/ν > 100 then
14: check if asymptotic expansion (43) can be used, otherwise Laguerre series (22)
15: end if
16: Laguerre series (22) . Backup method
17: end if

4.2 Algorithm for real order

The algorithm for real order differs on the computational methods applied for small x.
The alternating series (16) converges faster and it is used for large ν/x and as a backup
method. Series (20) is used when the value ν guarantees that all terms of the expansion
are positive. Finally, Laguerre series (22) is employed in regions where results returned by
series expansions are not sufficiently accurate.
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Algorithm 5 Algorithm for Eν(x), ν ∈ R+ and x > 0

Input: ν ∈ R+, x > 0
Output: Eν(x)

1: if x ≤ 1 and x < 20 then
2: if ν/x > 10 then
3: series expansion (16) . Fast convergence
4: end if
5: if ν > 1.5 and x > 0.5 then
6: Laguerre series (22) . Slow but more accurate
7: else if ν < 0.9 then
8: series expansion (20) . All terms of expansion are positive
9: else

10: series expansion (16) . Backup method
11: end if
12: else if ν ≥ x then
13: if x < 5 then
14: check if asymptotic expansion (55) can be used, otherwise Laguerre series (22)
15: end if
16: Laguerre series (22) . Backup method
17: else
18: if x/ν > 100 then
19: check if asymptotic expansion (43) can be used, otherwise Laguerre series (22)
20: end if
21: Laguerre series (22) . Backup method
22: end if

5 Benchmarks

Publicly available implementations of the generalized exponential integral in double-precision
arithmetic are Cephes [30], Boost [3] and GNU Scientific Library (GSL) [17]. These libraries
provide implementations for the special case ν ≡ n, n ∈ N. To our knowledge, there are
no numerical libraries in double-precision arithmetic implementing Eν(x) for real values of
ν. We compare our implementation to the aforementioned software for ν integer and to
mpmath [26] and Arb [24], both supporting arbitrary-precision arithmetic, for real ν.

To compare our implementation to other software packages we use performance profiles.
Performance profiles [16] are widely used tools for benchmarking and evaluating the perfor-
mance of several solvers, particularly in the fields of optimization and linear algebra, when
run on a large test set. Performance profiles provide a convenient procedure of assessing the
performance of a code relative to the best code of the set.

Regarding the other codes, Cephes and Boost use similar algorithms, both use continued
fractions as a main method and the power series for small x. In addition, Cephes includes the
uniform asymptotic expansion in (45) for n > 5000. The implementation in GSL is purely
based on the applications of the functional relation with the incomplete gamma function (3).
As shown in Figure 2 and Table 6, this simplistic approach in double-precision has several
limitations, especially for large n, as the number of failures indicate.

Figure 2 compares all four codes in terms of the relative error using as a reference the
value computed by mpmath with 1000 digits of precision. If relevant discrepancies arise using
different levels of precision, we use the result from Arb or Mathematica, which tend to be
more reliable. The test samples are generated non-uniformly, in fact we select certain input
values around regions of transition between computational methods, in order to test the
worst cases. Figure 3 shows a comparison in terms of computation time. All measurements
were obtained by evaluating each test sample 100 times are returning the average time.
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Figure 2: Accuracy profiles case n ∈ N and x > 0.
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Figure 3: Performance profiles case n ∈ N and x > 0.

Observing the performance profiles and the statistics in Table 6, it seems safe to claim
that our algorithm outperforms the other available codes. In terms of computation time,
Boost comes very close in median, however, for some large values of n the computation time
is ridiculously high. Cephes does not include an asymptotic expansion for large n < 5000,
so cases where n is large and x < 1 require the computation of n terms, being prohibitively
expensive. Nevertheless, Cephes implements a more effective computation scheme than
Boost, the former being possibly improved by replacing the S-fraction by the J-fraction, as
shown in Section 3.
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Library Max. error Avg. error Avg. time (µs) Stdev. time (µs) fails
Paper 9.7e−16 1.3e−16 0.25 0.21 0/200
Cephes 1.4e−15 2.0e−16 0.73 2.47 0/200

Boost-1.61.0 4.8e−15 3.3e−16 63.76 558.36 0/200
GSL-2.2.1 5.2e−14 6.1e−15 1.34 1.19 75/200

Table 6: Error statistics for each library. gcc-5.4.0 compiler running Cygwin. Time in mi-
croseconds. Fails: returns Incorrect/NaN/Inf. Intel(R) Core(TM) i5-3317 CPU at 1.70GHz.

For real order ν we have generated two sample sets with the following characteristics:

• Large set: ν ∈ [0.0, 10000] and x ∈ [10−9, 1000]

• Small set: ν ∈ [0.04, 70] and x ∈ [0.00075, 1.5]

The large set was generated to test the accuracy of asymptotic expansions and Laguerre
series, whereas the small set is testing the region in x where a loss of significant digits is
expected. As shown in Table 7, the maximum relative error determines that about 5 bits
of precision might be lost. These results suggest that the computation in this region could
be improved by re-implementing both series expansions using DD operations, at the cost of
worsening the computation time.

Library Max. error Avg. error Avg. time (µs) Stdev. time (µs) fails
Large set 9.8e−16 1.1e−16 0.14 0.10 0/1500
Small set 3.1e−15 1.7e−16 0.52 0.37 0/500

Table 7: Error statistics for each library. gcc-5.4.0 compiler running Cygwin. Time in mi-
croseconds. Fails: returns Incorrect/NaN/Inf. Intel(R) Core(TM) i5-3317 CPU at 1.70GHz.

5.1 Arbitrary-precision floating-point libraries

We evaluate the implementation of the generalized exponential integral in the arbitrary-
precision packages Arb 2.8 and mpmath 0.19. Test were run on an Intel(R) Core(TM)
i7-6700HQ CPU at 2.60GHz. For testing Arb we use Sage 7.3. Both software packages
implement the generalized exponential integral using the functional relation with the in-
complete gamma function, which is implemented using the series expansion of the confluent
hypergeometric function for small x and the asymptotic expansion of the U-Kummer func-
tion for large x, for more details refer to [25]. Table 8 summarizes the results obtained
by mpmath for all three test sets using 53-bit of precision. Mpmath automatically chooses
guard bits to achieve the requested accuracy, however it is usually unable to return a correct
results for large parameters. Additionally, mpmath doest not return a flag indicating that
the result is incorrect.

Set Max. error Avg. error Avg. time (µs) Stdev. time (µs) fails
Integer 1.0 4.4e−13 125 243 5/200

Large real 1.2e+163 2.2e−15 16397 128024 75/1500
Small real 0.0 0.0 672 187 0/500

Table 8: Error statistics mpmath library. Average error is computed after excluding relative
errors ≥ 1e−10. A result is considered wrong if relative error is > 1e−14.

Arb uses interval arithmetic and efficiently tracks errors. The usage of the functional
relation works reasonably well in most of the cases, but as shown below for large parame-
ters one needs to increase the working precision considerably to obtain a solution with 16
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significant digits. For example, evaluating E500.25(400) at 53, 1000 and 1210 bits with Arb
produces:

sage: CBF = ComplexBallField(53)

sage: CBF(400).exp_integral_e(CBF(500+1/4))

nan + nan*I

sage: CBF = ComplexBallField(1000)

sage: CBF(400).exp_integral_e(CBF(500+1/4))

[+/- 5.05e-130]

sage: CBF = ComplexBallField(1210)

sage: CBF(400).exp_integral_e(CBF(500+1/4))

[2.128687916150507e-177 +/- 6.64e-194]

sage: %timeit CBF(400).exp_integral_e(CBF(500+1/4))

1000 loops, best of 3: 1.15 ms per loop

Hence, it is necessary to systematically increase the precision in order to obtain results
at the desired accuracy. On the other hand, our implementation uses the Laguerre series in
this domain reporting fast convergence (5 terms), see below:

In [1]: import expint

In [2]: expint.expint_v(500+1/4,400)

Out[2]: 2.128687916150507e-177

In [3]: %timeit expint.expint_v(500+1/4,400)

1000000 loops, best of 3: 475 ns per loop

Finally, we encourage the use of more sophisticated computation scheme and addition
of specific numerical methods for the computation of the generalized exponential integral in
arbitrary-precision arithmetic.

6 Conclusions

In this paper, we proposed an efficient algorithm for the computation of the generalized ex-
ponential integral. The algorithm includes a new asymptotic expansion for large order ν and
other methods not implemented in existing software. Numerical experiments confirmed the
benefits of using internal higher precision arithmetic for regions where numerical instability
appears, thus obtaining more reliable results. This resulted in an implementation capable
of outperforming available software packages in terms of accuracy and computation time.

We believe the improvements and suggested numerical methods in this paper should be
considered for inclusion in arbitrary-precision arithmetic software packages, which in general
implement simplistic computation schema and rely on continuously increasing the working
precision to obtain a solution satisfying the user’s precision. Finally, our implementation in
C++ was made freely available.
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