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Abstract We present a method of high-precision computation of the confluent
hypergeometric functions using an effective computational approach of what we
termed Franklin-Friedman expansions. These expansions are convergent under mild
conditions of the involved amplitude function and for some interesting cases the
coefficients can be rapidly computed, thus providing a viable alternative to the
conventional dichotomy between series expansion and asymptotic expansion. The
present method has been extensively tested in different regimes of the parame-
ters and compared with recently investigated convergent and uniform asymptotic
expansions.
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1 Introduction

The current standard method of evaluation of many special functions to high-
precision consists of employing the ascending series for small argument z, i.e. the
direct series expansion at z = 0, combined with the usage of an asymptotic ex-
pansion for large values of the argument z. It is well known that the behaviour
of asymptotic series of Poincaré type for large |z| is characterized by having ini-
tial terms that decrease in magnitude until a minimum is attained, also known
as optimal truncation, and thereafter subsequent terms start to increase. This
limitation on the achievable accuracy forces a switch from the asymptotic series
to the ascending series depending on the desired level of precision. However, the
evaluation of ascending series for large z requires to increase the working precision
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in order to compensate the large amount of cancellation, which in turn increases
the computational cost.

Normally, the scheme of computation implemented in high-precision software
is a relatively simplistic choice between the ascending series and the asymptotic
series based on the magnitude of the argument z and the desired level of precision
or other heuristics that generally exclude other parameters involved. This type of
scheme, although asymptotically valid, may lead to incorrect results in the vicinity
of the transition region.

Alternative computational methods have been devised to complement the de-
scribed dichotomy between series expansion and asymptotic expansion. These
methods, such as exponentially-improved expansions [13] or their extension called
hyperasymptotic expansions [12], are focused on extending the region of validity
of the asymptotic series by iteratively re-expanding the remainder terms at op-
timal truncation into another asymptotic series, each exponentially smaller than
its predecessor. This procedure increases the attainable accuracy of the asymp-
totic expansion at the expense of the computational cost of evaluating substantial
complicated terms at each level of the hyperasymptotic expansion.

A remarkable method to obtain geometrically convergent series for the eval-
uation of special functions consists of using variants of Hadamard series, which
have been extensively investigated by R. B. Paris, for example in [14]. These series
involving the normalized incomplete gamma function exhibit a rapid decay after
the optimal truncation term, being comparable with the behaviour of the first
terms of the asymptotic expansion. A similar geometrically convergent series for
the evaluation of Bessel functions was developed by D. Borwein, J. Borwein and
O. Chan in [1] through the evaluation of the so-called “exp-arc” integrals.

On the other hand, it is essential to mention the role played by uniform asymp-
totic expansions to obtain powerful expansions valid for extended regimes of the
parameters. We shall remark the so-called vanishing saddle point method developed
by N. M. Temme in [15,16]. This method is applicable to Laplace-type integrals
of the form

Fλ(z) =
1

Γ (λ)

∫ ∞
0

tλ−1e−ztf(t) dt, (1)

with <(λ) > 0 and z large, in which λ may also be large. Essentially, this method
expands the amplitude function f(t) at t = µ, µ = λ/z ≥ 0 being a uniformity
parameter corresponding to the saddle point of the dominant part of the integral
(1).

In this paper, we revisit the theory originally developed by J. Franklin and
B. Friedman in [7], which henceforth we shall call Franklin-Friedman expansions.
Their method was developed with the aim to overcome the disadvantages of the
direct application of Watson’s lemma to Laplace-type integrals [17, §2]. Histori-
cally, this method has not received significant attention, presumably due to the
inherent difficulty of evaluating the coefficients of the expansion. We shall show,
through the study of an important amplitude function occurring in many integral
representations of special functions, how the coefficients of the Franklin-Friedman
expansion can be efficiently evaluated, resulting in a convergent method capable
of out-performing aforementioned methods.

The rest of the paper is outlined as follows. In Section 2, we briefly revisit the
theory corresponding to the Franklin-Friedman expansion and we show an illus-
trative example. Then in Section 3, we compute the coefficients for the amplitude
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function corresponding to the confluent hypergeometric function and we provide
an analysis of the obtained coefficients. In Section 4, we present an effective recur-
sive algorithm for the computation of the coefficients and we provide numerical
calculations and compare the present method with the conventional ascending-
asymptotic series and previously discussed convergent and uniform asymptotic
expansions. Finally, in Section 5, we discuss possible enhancements and present
our conclusions.

2 The Franklin-Friedman expansion

J. Franklin and B. Friedman developed in [7] a method for obtaining convergent
asymptotic representations for Laplace-type integrals of the form

Fλ(z) =
1

Γ (λ)

∫ ∞
0

tλ−1e−ztf(t) dt, <(z) > 0, <(λ) > 0, (2)

for large values of z with suitable assumptions on the amplitude function f(t).
This method is based on the application of a type of interpolation process to the
function f(t), differing from Watson’s lemma, in which the amplitude function
is expanded in a power series at t = 0 and integrated term by term. The first
interpolation point t0 = λ/z corresponds to the saddle point of the dominant part
tλe−zt, and by substituting in (2) we obtain

Fλ(z) = f(t0)z−λ +
1

Γ (λ)

∫ ∞
0

tλ−1e−zt(f(t)− f(t0)) dt . (3)

After integrating by parts we obtain

Fλ(z) = f(t0)z−λ +
1

zΓ (λ)

∫ ∞
0

tλe−ztf1(t) dt, (4)

where the new amplitude function f1(t) is defined by

f1(t) =
d

dt

f(t)− f(t0)

t− t0
. (5)

One can observe that integral (4) has the same form as the integral (2), with λ

replaced by λ + 1 and f by f1. The interpolation point for the next iteration is
t1 = (λ + 1)/z. This process can be continued iteratively obtaining the following
series expansion

Fλ(z) =
n−1∑
k=0

fk(tk)
(λ)k
zλ+2k

+
1

znΓ (λ)

∫ ∞
0

tλ+n−1e−ztfn(t) dt, (6)

where n = 0, 1, 2, . . ., f0(t) = f(t) and

fk+1(t) =
d

dt

fk(t)− fk(tk)

t− tk
, tk =

λ+ k

z
, k = 0, 1, 2, . . . . (7)

Sufficient conditions on the amplitude function f(t) for the convergent behaviour
of the series expansion are stated in the following two theorems. We refer to [7]
for proofs.



4 Guillermo Navas-Palencia

Theorem 1 (J. Franklin and B. Friedman [7]) Take λ = α+ iβ, where α is real

and positive and β is real. For β 6= 0, suppose that f(t) is analytic for <(t) > 0 and

that f ∈ C2n[0,∞), such that the derivatives satisfy

|f (m)(t)| ≤Meµt, m = 0, 1, . . . , 2n,

where M and µ are non-negative constants. Under these conditions, expansion (6) has

an asymptotic behaviour as z →∞, with remainder term of order O(z−2n−λ). If λ = α,

the assumption that f(t) is analytic for <(t) > 0 may be replaced by the assumption

that f ∈ C2n[0,∞) for t > 0. Therefore, the series expansion is convergent.

Theorem 2 (J. Franklin and B. Friedman [7]) Suppose f(q) = f(x+ iy) can be

represented in the form

f(q) =

∫ ∞
0

e−qt dΨ(t), x > 0,

where Ψ(t) is a complex-value function which is of bounded variation in each finite

interval t ∈ [0, T ] and which satisfies the inequality

|Ψ(t)| ≤M, t ≥ 0.

Then for z > 0 and <(λ) > 0, series expansion (6) converges to (2).

In [17, §17.4], Temme gives the first five coefficients fk(tk) for the incomplete
gamma function ezΓ (1− λ, z) = 1

Γ (λ)

∫∞
0
tλ−1e−zt(1 + t)−1 dt, amplitude function

f(t) = (1 + t)−1, by using computer algebra

f0 =
z

ζ
, f1 =

z3

ζ(ζ + 1)2
, f2 =

z5(3ζ + 4)

ζ(ζ + 1)2(ζ + 2)3
,

f3 =
z7(15ζ3 + 90ζ2 + 175ζ + 108)

ζ(ζ + 1)2(ζ + 2)3(ζ + 3)4
,

f4 =
z9(105ζ6 + 1680ζ5 + 11025ζ4 + 37870ζ3 + 71540ζ2 + 70120ζ + 27648)

ζ(ζ + 1)2(ζ + 2)3(ζ + 3)4(ζ + 4)5
, (8)

where ζ = z+λ. Despite the relative ease of computing the coefficients by means of
computer algebra systems, it is usually difficult to obtain explicit representations
such that these become usable for numerical evaluation purposes. In practice,
one generates a few coefficients of the expansions for a bounded domain of the
parameters and incorporate them into a routine, this procedure being solely valid
for fixed precision.

3 The expansion for U(a, b, z)

The confluent hypergeometric function of the first kind 1F1(a; b; z) and the Kummer

function U(a, b, z) arise as linearly independent solutions of the Kummer’s differen-

tial equation [4, §13.2]

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0, (9)
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for b /∈ Z− ∪ {0}. Confluent hypergeometric functions appear in a wide range
of applications in mathematical physics and applied mathematics. Many special
functions are expressible in terms of specific forms of the confluent hypergeometric
functions such as, for example, Bessel functions, incomplete Gamma functions and
Laguerre polynomials amongst others.

A convenient starting point for U(a, b, z) is the integral representation [17,
§10.1.5]

U(a, b, z) =
1

Γ (a)

∫ ∞
0

ta−1e−zt(1 + t)b−a−1 dt, (10)

valid for <(a) > 0 and <(z) > 0. Laplace-type integral (10) includes the amplitude
function f(t) = (1 + t)b−a−1, which we shall investigate further on. An asymptotic
expansion valid for |z| → ∞ can be derived by application of Watson’s lemma to
the integral representation (10). We obtain

U(a, b, z) ∼ z−a
∞∑
k=0

(−1)k
(a)k(a− b+ 1)k

k!zk
, |ph z| ≤ 3

2
π − δ, (11)

where δ is an arbitrary small positive constant such that 0 < δ � 1 and (a)k =
a(a+1) · · · (a+k−1) denotes a rising factorial or Pochhammer symbol. For <(z) > 0,
asymptotic series (11) is alternating and thus the remainder is bounded by the
absolute value of the first neglected term. As previously discussed, the remainder
cannot be reduced arbitrarily, hence when z is not sufficiently large with respect
to a and b (not made rigorous here) and the required precision bits is moderate,
this expansion cannot be used effectively.

Evaluation of U(a, b, z) outside the sector |ph z| < 1
2π can be achieved by use

of the continuation formula [17, §10.1.11]

e−zU(a, b, z) =
e∓πiaΓ (b− a)

Γ (b)
1F1(b− a; b;−z)

− e∓πibΓ (b− a)

Γ (a)
U(b− a, b, ze∓πi), (12)

where 1F1(a; b; z) is an entire function with series expansion given by [17, §10.1.2]

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)kk!

zk. (13)

To compute the Kummer function U(a, b, z) for small values of z, the usual
approach is to employ connection formulas for this function in terms of 1F1(a; b; z),
for example [17, §10.1.12]

U(a, b, z) =
Γ (1− b)

Γ (a− b+ 1)
1F1(a; b; z) +

Γ (b− 1)

Γ (a)
z1−b 1F1(a− b+ 1; 2− b; z), (14)

which is not defined for integer values of b, although the limit exists for b → 0.
Additionally, a recent method for computing the Kummer function U(a, b, z) for
small values of |a|, |b| and |z| is described in [8].
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3.1 The Franklin-Friedman expansion coefficients

We compute the coefficients of the Franklin-Friedman expansion for the amplitude
function f(t) = (1+ t)b−a−1 appearing in the Laplace-type integral for U(a, b, z) in
(10). We start computing a few coefficients fk in expansion (6) using Mathematica
10 [18] and employing the Expand and FullSimplify options to perform algebraic
simplifications and transformations. We only show the first two coefficients since
their size grows considerably with k

f0 = (1 + a/z)b−a−1 and f1 = z3
(

(a+zz )b−a

a+ z
−

(1+a+z
z )b−a(2 + 2a− b+ z)

(1 + a+ z)2

)
.

Note that above coefficients coincide with those in (8) when λ = a = b. Unfor-
tunately, Mathematica was unable to produce more simplified expressions of fk.
Hereinafter, we proceed to generate tractable explicit representations of the coef-
ficients fk. Let us first define the coefficients Aqs := (1 + (a+ s)/z)q. Subsequently,
we factorize the previously obtained coefficients and rearrange terms such that
coefficients Ab−a−ij appear in ascending order (i, j). The first four coefficients fk
are now given by

f0 = Ab−a−1
0 ,

f1 = (Ab−a−2
1 (b− a− 1) + (Ab−a−1

0 −Ab−a−1
1 )z)z,

f2 =
(
Ab−a−3

2 (b− a− 1)(b− a− 2) + 2(Ab−a−2
1 −Ab−a−2

2 )(b− a− 1)z

+ (Ab−a−1
0 − 2Ab−a−1

1 +Ab−a−1
2 )z2

)
z2

2
,

f3 =
(
Ab−a−4

3 (b− a− 1)(b− a− 2)(b− a− 3)

+ 3(b− a− 1)(b− a− 2)(Ab−a−3
2 −Ab−a−3

3 )z

+ 3(b− a− 1)(Ab−a−2
1 − 2Ab−a−2

2 +Ab−a−2
3 )z2

+ (Ab−a−1
0 − 3Ab−a−1

1 + 3Ab−a−1
2 −Ab−a−1

3 )z3
)
z3

6
.

We observe that the terms multiplying Ab−a−ij in fk correspond to rows of Pas-

cal’s triangle, with alternating sign for the inner terms in (· · · )zk−j . Furthermore,
a multiplicative factor zk/k! is present. After performing a few more algebraic
manipulations we obtain the explicit representation of fk given by

fk = ck(z)
zk

k!
, (15)

where

ck(z) =
k∑
j=0

(
k

j

)
zk−jdj

k∑
s=j

(−1)s−j
(
k − j
k − s

)
Ab−a−1−j
s , k = 0, 1, 2, . . . (16)

and dj is defined by

dj =
Γ (b− a)

Γ (b− a− j)
=

{
1, j = 0

dj−1(b− a− j), j > 0
(17)
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We remark that equations (16)-(17) add the internal coefficients backwards. In
order to calculate them forward, the coefficients ck(z) are written equivalently as

ck(z) =
k∑
j=0

(
k

j

)
zj lj

j∑
s=0

(−1)s
(
j

s

)
Ab−a−1−k+j
k−j+s , (18)

where

lj =
Γ (b− a)

Γ (b− a+ j − k)
=

{∏k
i=1(b− a− i), j = 0
dj−1

(b−a−k+j) , j > 0
(19)

Note that the previous double finite summation is over the triangle 0 ≤ s ≤ j ≤ k.
Furthermore, ck(z) can be written as

ck(z) = zk−qk!
k∑
j=0

(
q

k − j

)
1

j!

j∑
s=0

(−1)s
(
j

s

)
1

(p+ k − j + s)k−q−j
, (20)

where q = b− a− 1 and p = z + a. We shall see that the explicit representation in
(20) will lead to our main result (Theorem 3), where we prove that the following
expression for U(a, b, z) holds

U(a, b, z) =
∞∑
k=0

ck(z)
(a)k
k!za+k

. (21)

3.2 Analysis of the coefficients ck(z)

In this subsection we examine the coefficients ck(z) defined in (20). Let us define

the coefficients rj :=
∑j
s=0(−1)s(js)(p+ k− j+ s)q+j−k corresponding to the inner

summation in (20). These coefficients are defined by the binomial transform of the
sequence {(p + k − j + s)q+j−k}s≥0, which can be represented by means of the
Nörlund-Rice integrals [6].

In what follows, we proceed to derive asymptotic expansions and upper bounds
for the coefficients ck(z). Let us consider the alternating binomial sum defined by

F (z,N,m) =
N∑
k=0

(
N

k

)
(−1)k

1

(z + k)m
. (22)

In [3], Coffey calculates the alternating binomial sum (22) for (N,m) ∈ N and
z ∈ C\Z−0 . The main result of [3] is an analytic relation in terms of Bell polynomials
with generalized harmonic number arguments. We present some of his results along
with other relations that will be needed further on

F (z,N,m) =
1

zm
m+1Fm(z, . . . , z,−N ; z + 1, . . . , z + 1; 1) (23)

=
1

(m− 1)!

∫ ∞
0

tm−1e−zt(1− e−t)N dt (24)

where pFq(a1, . . . , ap; b1, . . . , bq; z) is the generalized hypergeometric function.
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The Stirling numbers of the second kind S(n, k) may be defined by the following
generating function

n∑
k=1

S(n, k)(x− k + 1)k = xn, (25)

and S(n, k) = 0 for n < k. We introduce the following proposition for the coeffi-
cients ck(z).

Proposition 1 Given a, b, z ∈ C, <(z) > 0 and j, k ∈ N, coefficients ck(z) in (20)

can be represented by the following asymptotic expansion as (p+ k)→∞

ck(z) ∼ zk−qk!
k∑
j=0

(
q

k − j

)
(j+1)

∞∑
i=j+1

S(i, j + 1)(k − q − j)i
i!

ζ(k−q−j+i, p+k+1).

(26)

Proof We use the integral representation (24) for rj

rj =
1

Γ (k − q − j)

∫ ∞
0

tk−q−j−1e−(p+k−j)t(1− e−t)j dt . (27)

This Laplace-type integral is defined for <(k − q − j) > 0, where a direct use of
Watson’s lemma applies, see (30). Alternatively, note that this integral can be
written as∫ ∞

0

tk−q−j−1e−(p+k−j)t(1− e−t)j dt =

∫ ∞
0

tk−q−j−1e−(p+k+1)t (et − 1)j+1

(1− e−t)
dt .

An asymptotic expansion for rj can be obtained if we expand (et− 1)j+1 at t = 0,
which corresponds to the following generating function of the Stirling coefficients
of the second kind (25)

(et − 1)j+1 = (j + 1)!
∞∑

i=j+1

S(i, j + 1)
ti

i!
, (28)

and interchanging the previous summation and integration we obtain a divergent
asymptotic series

rj ∼
(j + 1)!

Γ (k − q − j)

∞∑
i=j+1

S(i, j + 1)

i!

∫ ∞
0

tk−q−j+i−1 e
−(p+k+1)t

(1− e−t)
dt . (29)

The resulting integral has an explicit representation in terms of the Hurwitz zeta
function [4, §25.11]. Hence, replacing the integral by the Hurwitz zeta function
and substituting the ratio of gamma functions by a Pochhammer symbol gives the
result. �

An equivalent asymptotic expansion representation for (p+k)→∞ is obtained
by application of Watson’s lemma to integral (27)

rj ∼
j!

Γ (k − q − j)

∞∑
i=j

S(i, j)

i!

Γ (k − q − j + i)

(p+ k)i+k−q−1
= j!

∞∑
i=j

S(i, j)

i!

(k − q − j)i
(p+ k)i+k−q−1

, (30)

where the use of Pochhammer symbol permits the evaluation out of the domain
<(k− q− j) > 0. In [3] a similar asymptotic expansion restricted to k− q− j ∈ N is
obtained after a change of variable and using the generating function for Stirling
numbers of the first kind and solving the beta function.
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Remark 1 Interestingly, coefficients ck(z) have a remarkable property for (a, b) in a
domain D := {(a, b) ∈ C2 : b− a− 1 = n, n ∈ N}. For this particular case, U(a, b, z)
reduces to a polynomial in z of degree n given by

U(a, a+ n+ 1, z) = z−a
n∑
j=0

(
n

j

)
(a)j
zj

. (31)

We note, by expanding the double binomial sum in (20), that coefficients ck(z)
vanish by symmetry for k > bn/2c. This implies that expansion (21) terminates in
almost half of terms required by (31).

We now prove the Franklin-Friedman expansion for U(a, b, z) in (21).

Theorem 3 For (a, b, z) ∈ C3 and <(z) > 0 the Franklin-Friedman expansion for the

confluent hypergeometric function U(a, b, z) is given by

U(a, b, z) =
∞∑
k=0

ck(z)
(a)k
k!za+k

, (32)

where

ck(z) =
k∑
j=0

(
k

j

)
zk−j

Γ (b− a)

Γ (b− a− j)

k∑
s=j

(−1)s−j
(
k − j
k − s

)
Ab−a−1−j
s (33)

=
k∑
j=0

(
k

j

)
zj

Γ (b− a)

Γ (b− a+ j − k)

j∑
s=0

(−1)s
(
j

s

)
Ab−a−1−k+j
k−j+s , k = 0, 1, 2, . . . ,

(34)

and

Aqs =
(

1 +
a+ s

z

)q
. (35)

Proof It follows from (24) that coefficients ck(z) can be written as

ck(z) =
k!

zq−k

k∑
j=0

(
q

k − j

)
1

j!

j∑
s=0

(−1)s
(
j

s

)
1

(p+ k − j + s)k−q−j

=
k!

zq−k

k∑
j=0

(
q

k − j

)
1

j!Γ (k − j − q)

∫ ∞
0

tk−q−j−1e−(p+k−j)t(1− e−t)j dt,

(36)

where q = b− a− 1 and p = z + a with the integral representation being valid for
<(k− q− j) > 0 and <(p+ k− j) > 0. Next, we rearrange U := ( q

k−j)
1

j!Γ (k−j−q) , to

obtain U = u(q, k, j)f(k, j), where f(k, j) = 1/(j!(k− j)!). The following identity is
established for u(q, k, j)

u(q, k, j) =
Γ (q + 1)

Γ (q − k + j + 1)Γ (k − j − q)
= −Γ (q + 1) sin(π(j − k + q))

π
. (37)
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Now replacing (37) into (36) and by formally interchanging integration and sum-
mation we obtain the following integral representation for ck(z)

ck(z) = −Γ (q + 1)k!

zq−kπ

∫ ∞
0

 k∑
j=0

sin(π(j − k + q))ejt(1− e−t)j

j!(k − j)!tj

 tk−q−1e−(p+k)t dt

=
Γ (q + 1) sin(π(k − q))

zq−kπ

∫ ∞
0

t−q−1e−(p+k)t(1− et + t)k dt, (38)

valid for <(q) < 0 and <(p) > 0. Given the explicit integral representation of ck(z)
in (38), the proof consists of developing the sum after replacing (38) into (32).
Thus, we obtain after interchanging summation and integration

∞∑
k=0

ck(z)(a)k
k!za+k

=
Γ (q + 1)

πza+q

∫ ∞
0

( ∞∑
k=0

(a)k sin(π(k − q))(1− et + t)k

ektk!

)
t−q−1e−pt dt .

This interchange is justified since the series converges absolutely. Now we consider
the following identity

∞∑
k=0

(a)k sin(π(k − q))(1− et + t)k

ektk!
= − sin(πq)eat

(1 + t)a
. (39)

Using (39), it follows that the Franklin-Friedman expansion in (32) is expressible
in terms of the Laplace-type integral given by

∞∑
k=0

ck(z)
(a)k
k!za+k

= −Γ (q + 1) sin(πq)

πza+q

∫ ∞
0

t−q−1e−(p−a)t

(1 + t)a
dt

= −Γ (b− a) sin(π(b− a− 1))

πzb−1

∫ ∞
0

ta−be−zt

(1 + t)a
dt .

By observing that the resulting integral is indeed the integral representation
of U(a, b, z) in (10) after application of Kummer’s transformation U(a, b, z) =
z1−bU(1 + a− b, 2− b, z), we obtain

U(a, b, z) = −Γ (b− a) sin(π(b− a− 1))z1−b

π

∫ ∞
0

ta−be−zt

(1 + t)a
dt (40)

=
1

Γ (a)

∫ ∞
0

ta−1e−zt(1 + t)b−a−1 dt, (41)

and the proof of the theorem is completed. �

Remark 2 A relation between contiguous coefficients can be obtained by perform-
ing integration by parts on (38), which yields

ck+1(p, q; z) = z(ck(p, q; z)− ck(p+ 1, q; z)) + qck(p+ 1, q − 1; z). (42)

Despite the interest of the latter result, this recurrence is not the preferred choice
to compute consecutive coefficients. An efficient method to compute a set of coef-
ficients ck(z) is described in Section 4.
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To conclude the analysis of coefficients ck(z), we derive an upper bound for the
domain of parameters D := {(a, b, z) ∈ C3 : <(a) > <(b)− 1 ∧ <(z + a) > 0}.

Proposition 2 For <(q) < 0 and <(p) > 0, we have

|ck(z)| ≤ |zk−qpq|. (43)

Proof Let us consider the integral representation of ck(z) in (38)

ck(z) = ϕ(k, p, q)

∫ ∞
0

t−q−1e−(p+k)t(1− et + t)k dt,

where

ϕ(k, p, q) =
zk−qΓ (q + 1) sin(π(k − q))

π
= (−1)k

zk−q

Γ (−q)
.

We have that the amplitude function (1− et + t)k is bounded in absolute value by
|1− et + t|k ≤ (1 + t)k + ekt. Hence,

|ck(z)| ≤ |ϕ(k, p, q)|
(∫ ∞

0

t−q−1e−(p+k)t(1 + t)k dt+

∫ ∞
0

t−q−1e−pt dt

)
. (44)

We note that the first integral is expressible in terms of Charlier polynomials
of degree q [4, §13.6.20]

1

Γ (−q)

∫ ∞
0

t−q−1e−(p+k)t(1 + t)k dt = (k + p)qCq(k; k + p), (45)

whereas the second integral is simply∫ ∞
0

t−q−1e−pt dt = Γ (−q)pq. (46)

Substituting (45) and (46) into (44) gives an upper bound for ck(z). A simpler
bound can be easily obtained by means of the equivalent integral representation

ck(z) =
zk−q

Γ (−q)

∫ ∞
0

t−q−1e−pt(1− (1 + t)e−t)k dt,

where the amplitude function is bounded in absolute value by |1− (1 + t)e−t| ≤ 1.
Thus, using the result in (46) gives the bound. �

Table 1 shows effectiveness of the bound for several values (a, b, z) ∈ D and
k. Such a bound can be used to determine the truncation level N due to the
convergent behaviour of the expansion.

a b z k |ck| (43)
-500.1 -602.4 770 10 1.1e+64 7.9e+75
710.2 72.5 1500 15 2.7e−82 1.3e−60
-50.1 -62.4 70 20 2.8e+34 1.5e+44
-10.1 -52.4 80 30 1.3e+40 4.3e+59
-5.1 -62.4 40 50 5.4e+73 3.6e+83

Table 1: Effectiveness of bound on ck(z) in (43) for q < 0 and p > 0.
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Furthermore, application of Watson’s lemma to integral representation (38)
gives a first-order asymptotic approximation for (p+ k)→∞ given by

ck(z) ∼ zk−qΓ (q + 1) sin(π(k − q))
π

Γ (2k − q)
2k(k + p)2k−q

= (−1)k
zk−q(−q)2k

2k(k + p)2k−q
. (47)

Table 2 shows a few examples of the above asymptotic approximation of ck(z)
for large argument.

a b z k ck(z) (47)
12.1 10.4 100 10 5.7e−05 4.6e−05
22.1 11.4 100 50 1.7e+36 1.8e+38
20.1 12.4 280 50 3.9e+23 3.6e+25

Table 2: Asymptotic approximation on ck(z) in (47) for q < 0 as p+ k →∞.

Finally, we note that the terms of the Franklin-Friedman expansion (21) satisfy
the order estimate

ck(z)
(a)k
k!zk+a

= O(2kka−3/2e−2kh(z)), k →∞, p→∞, (48)

where h(z) = (1 + p/k)−2k+q. This result is obtained combining the asymptotic
estimate in (47) and the usual estimates for the factorial and Pochhammer symbol
given by

k! = O
(
kk+1/2e−k

)
, (a)k = O

(
ka+k−1/2e−k

)
, k →∞.

4 Efficient computation of U(a, b, z)

4.1 Fast computation of coefficients ck(z)

Equations (16), (18) and (20) are explicit representations that can be used to
compute ck(z) directly, but a double binomial sum turns out to be significantly
expensive as k grows. Furthermore, from a numerical perspective, the evaluation
of alternating binomial sums are prone to suffer from substantial cancellation. As
we shall see, the direct computation of ck(z) can be avoided by constructing a
recurrence equation for generating a set of ck(z), k ∈ {0, . . . , N}. This idea leads
to the following proposition and Algorithm 1.

Proposition 3 The coefficients ck(z) of the Franklin-Friedman expansion for the am-

plitude function f(t) = (1 + t)b−a−1 satisfy the recurrence equation

ck(z) = uk +
k−1∑
i=0

(
k

i

)
zk−iui, (49)

where

uk = Ab−a−1−k
k k!Lb−a−1−k

k (z + a+ k) and c0 = u0 = Ab−a−1
0 , (50)

Lλk(z) being generalized Laguerre polynomials.
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Proof We start defining uk as the leading coefficient f(Ak), resulting from the
iteration j = 0 in (18). After grouping the remaining coefficients f(Aj), j < k in
ascending order j, we identify that each f(Aj) is a non-linear combination of the
previous leading terms uj , j < k. These non-linear terms in the recurrence equation

are indeed binomial coefficients (kj) times zk−j . This gives the following expression
for uk, which can be expressed in terms of generalized Laguerre polynomials as
follows

uk =
k∑
j=0

(−1)k−j
(
k

j

)
zk−jdjA

b−a−1−j
k

= Ab−a−1−k
k

k∑
j=0

(
k

j

)
(−zAk)k−j

Γ (b− a)

Γ (b− a− j)

= Ab−a−1−k
k k!Lb−a−1−k

k (zAk) (51)

and dj is defined as in (17). Taking zAk = z+ a+ k gives the final closed form for
uk. �

Recently, several variants of asymptotic expansions for large order k have been
extensively studied for generalized Laguerre polynomials. For example, the paper
[2] provides a treatment for the region of sub-exponential behaviour and the re-
cent paper [5] studies uniform asymptotic expansions for a larger domain of the
parameters. Although the computation of ck(z) by means of computing Laguerre
polynomials would certainly reduce cancellation effects, there is a substantial com-
putational cost involved.

In order to bypass the computation of generalized Laguerre polynomials and
the direct computation in (20), we introduce a fast algorithm for computing ck(z),
see Algorithm 1. This algorithm combines both binomial expansion sums to reuse
the binomial coefficients, so in practice ck(z) at uk are computed at once. In terms
of time complexity, computing the first N coefficients ck(z) using Algorithm 1 has
complexity O(N2), whereas clearly a direct computation has complexity O(N3).
Additionally, note that coefficients dj in (17) do not need to be computed for
each j but for k, thus avoiding redundant operations. In terms of algorithmic
aspects, given a suitable truncation level N , the complete Pascal’s triangle until
row N can be pre-computed with complexity O(N2), obviously computing only
half rows. On the other hand, in terms of space complexity, computing the first
N coefficients with Algorithm 1 has complexity O(2N), due to the storage of
successive uk and dk. As we shall see later, this is not an issue due to the small
number of terms needed to obtain high accuracy. In general, several parts of the
algorithm can be easily pre-computed in parallel, for example a block of k : k ≤ N
coefficients Ab−a−1−j

k can be distributed to each thread. However, although pre-
computations improve efficiency, they require substantial space, especially for high-
precision computations. Concerning working precision, higher precision arithmetic
is normally needed to satisfy the requested accuracy, especially for large values of
the parameters and argument. Based on experiments, we found that to guarantee
good performance a working precision of p bits must satisfy p & 2N , N being the
number of terms in expansion (21). For this same reason, approaches based on
performing linear search to obtain an optimal number of terms N using floating-
point arithmetic are less likely to succeed.
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Algorithm 1 Fast computation of coefficients ck(z)

Input: a, b, z ∈ C, <(z) > 0, N ∈ N
Output: ck(z), k ∈ {0, . . . , N}
1: Pre-compute Pascal’s triangle, PascalRow(k), k ∈ {0, . . . , N}
2: U = [ ], C = [ ], D = [ ] . Empty cache of coefficients c, u and d
3: U [0]← C[0]← (1 + a/z)b−a−1 and D[0, 1]← [1, b− a− 1]
4: for k = 1; k = N ; k ← k + 1 do
5: r ← 0, t← 0
6: f ← zk

7: h← 1/z
8: m← 1 + (a + k)/z
9: n← 1/m

10: q ← mb−a−1

11: R = PascalRow(k) . k-th row of pre-computed Pascal’s triangle
12: for j = 0; j = k; j ← j + 1 do
13: u← f ·R[j]
14: p← (−1)k−j · u ·D[j] · q
15: t← t + p
16: f ← f · h
17: q ← q · n
18: if j < k then
19: r ← r + U [j] · u
20: else
21: D[j + 1]← D[j] · (b− a− 1− j) . Store next d
22: end if
23: end for
24: U [k]← t . Store block uk to posterior use
25: r ← r + t
26: C[k]← r . Store new coefficient ck(z)
27: end for

4.2 Numerical experiments

In this Section we compare expansion (21) with other asymptotic and convergent
series previously mentioned. The described algorithms has been implemented in
Python using the Mpmath library for multi-precision floating-point arithmetic [10].
Firstly, we compare (21) with the convergent expansion for U(a, b, z) in [14], which
we briefly summarize:

U(a, a+ b, z) = z−a
∞∑
k=0

(−1)k(a)k(1− b)k
k!zk

P (k + a, ϑx)

+
e−iaθ

Γ (a)

∞∑
n=1

e−ΩnxSn(x; θ), (52)

valid in |arg z| < π with z = xeiθ and x = |z|. The second series is defined as

Sn(x; θ) =
∞∑
k=0

ck,n(θ)

xk+1
∆P

(
k+1,

ωnx

2

)
, ∆P (m+1, z) = P (m+1, z)−P (m+1,−z).

Coefficients ck,n(θ) can be computed via recurrence relation. This method subdi-
vides the integration path in (10) into intervals of length 1

2ωn, where 1
2ωn = ϑ,

ϑ ∈ (0, 1] and Ωn denote the mid-points of these intervals, being both freely chosen.
As shown in [14, §4], expansion (52) converges geometrically without restriction



Franklin-Friedman expansion for confluent hypergeometric functions 15

on the parameters a and b when ϑ < 1. It is observed that evaluation of the second
series may be unavoidably expensive, even though the incomplete gamma function
can be computed via recursion.

We consider the example in [14, §5] to compare both expansions. This example
evaluates the modified Bessel function Kν(z) given by

ezKν(z) =
√
π(2z)νU

(
ν +

1

2
, 2ν + 1, 2z

)
. (53)

We reproduce Table 3 in [14, §5] for different values of θ with convergence rate
ϑ = 1

2 and n = 2, i.e. using the first two terms of the second expansion in (52).
We skip the improved case ϑ = 1

3 and n = 4 in [14, §5] due to the notable
computational effort. Results reveal that for z ∈ R, expansion (21) gives more
correct digits than Hadamard expansion, but for <(z) ≤ =(z) expansion (21) is
affected by a progressive loss of accuracy due to the omission of path rotation
arguments like those employed in [14].

(θ/π) Hadamard (52) Expansion (21)
0 4.3e−43 1.3e−50

0.125 8.3e−43 2.4e−49
0.250 9.8e−43 3.0e−45
0.375 5.3e−43 1.3e−38
0.500 6.4e−43 2.3e−28

Table 3: Comparison of the absolute error values when z = 15eiθ and ν = 3
4 . Series

truncated at N = 100 terms.

In the following tables we compare the performance of the ascending series,
asymptotic series and the vanishing saddle point series. The vanishing saddle point
series for U(a, b, z) is given by [17, §25.4]

U(a, b, z) ∼
∞∑
k=0

(1 + µ)b−a−1−k(b−a−1
k )Pk(a)

za+k
, (54)

where µ = a/z is the saddle point of the dominant part of the integral (10).
Coefficients Pk(a) are expressible in terms of generalized Laguerre polynomials
defined by

Pk(a) = k!L−n−ak (−a), (55)

and satisfy the following recursion relation

P0(a) = 1, P1(a) = 0, and Pk+1(a) = k(Pk(a) + aPk−1(a)), k = 1, 2, . . . .
(56)

For comparison, absolute relative errors are computed using as a reference
Arb [9] hypergeometric U evaluated at 5000-10000 bits of precision. Symbol (-)
indicates an absolute error > 1. Table 4 shows the absolute relative errors for
large parameters and argument when truncated at N terms. For these cases each
term of expansion (21) adds about 1 digit of accuracy every term. In particu-
lar, the first case in Table 4 corresponds to the generalized exponential integral
Eν(z) = zν−1U(ν, ν, z). We remark that this special case can be computed with
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(a, b, z) N Asymptotic (11) Vanishing (54) Expansion (21)
10 - 3e−14 6e−25
30 - 7e−34 1e−59

(600, 600, 500) 50 - 7e−50 6e−88
100 - 4e−82 5e−146
200 - 3e−128 2e−234
10 - 1e−04 1e−10
30 - 4e−15 8e−38

(100, 1, 1000) 50 4e−02 2e−26 7e−66
100 1e−27 2e−54 4e−132
200 9e−60 1e−102 2e−245
10 - 3e−01 3e−03
30 - 2e−05 2e−17

(1000, 500, 5000) 50 - 1e−11 2e−36
100 - 2e−31 8e−92
200 - 4e−78 3e−213

Table 4: Comparison between various methods for U(a, b, z). Large parameters and
argument.

faster methods, for example the Laguerre expansion described in [11] returns an
absolute relative error of magnitude 1.4e−294 with N = 200 terms.

Table 5 shows the performance of expansion (21) for small and moderate pos-
itive values of parameters and argument. For theses cases, we incorporate the
ascending series in (14) into the first column, where the value within parentheses
indicates the required number of terms to obtain that absolute relative error. We
notice that for sufficiently small argument z the ascending series out-performs the
Franklin-Friedman expansion, although for moderate values the latter substan-
tially improves both the ascending and asymptotic expansion.

(a, b, z) N Ascending (14) Asymptotic (11) Vanishing (54) Expansion (21)
10 - 1e−04 6e−10 8e−20
30 - 1e−16 8e−26 1e−52

(30, 81/4, 300) 50 - 1e−27 8e−39 3e−79
100 - 5e−48 6e−63 5e−131
200 1e−13 (N = 1000) 4e−68 3e−88 4e−202
10 - - 8e−04 6e−08
30 - - 3e−07 7e−20

(123/4, 101/5, 50) 50 - - 7e−08 2e−28
100 - - - 4e−43
300 2e−48 - - 9e−71
10 - 1e−10 2e−11 8e−19
30 - 5e−15 4e−16 4e−32

(5/4, 10/4, 30) 50 - 7e−13 3e−14 2e−39
100 6e−11 - - 4e−50
200 6e−80 - - 4e−61
10 - - - 7e−01
30 - - - 1e−04

(401/2, 211/6, 300) 50 - - - 5e−11
100 - - - 6e−30
200 4e−53 (N = 1600) - - 3e−66

Table 5: Comparison between various methods for U(a, b, z). Small and moderate
values of parameters and argument.

Finally, Table 6 shows cases with moderate negative parameters and positive
argument. For theses cases expansion (21) exhibits fast convergence giving about
1.7 digits of accuracy every term. We remark that, as described in [14], Hadamard
series accuracy deteriorates when a is large and negative due to the oscillatory
behaviour of the incomplete gamma function.
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(a, b, z) N Asymptotic (11) Vanishing (54) Expansion (21)
10 - - -
30 - - -

(−241/2, 20, 400) 50 - - 2e−19
100 1e−11 3e−16 2e−170
200 1e−226 4e−138 2e−375
10 - - -
30 - - 3e−21

(−500/6,−21/6, 300) 50 - 9e−11 2e−87
100 9e−118 7e−78 9e−212
200 6e−225 1e−143 3e−334

Table 6: Comparison between various methods for U(a, b, z). Moderate negative
parameters and argument.

5 Discussion

The Franklin-Friedman expansion developed provides a uniform approach to eval-
uating confluent hypergeometric functions to arbitrary-precision for sufficiently
large <(z) > 0 and outside this sector via connection formulas. This expansion is
generally convergent and especially useful for the transition region between the
ascending and asymptotic series. It is found that the expansion developed system-
atically out-performs the vanishing saddle point series and asymptotic expansion
in their respective regions of validity and is remarkably useful to compute the
confluent hypergeometric function for large parameters and argument, providing
a clear advantage over direct computation using the ascending series. Further-
more, it is observed that for small argument the expansion developed converges at
approximately geometric rate 2−N . However, for sufficiently small argument the
ascending series still exhibits faster convergence.

The presented approach results adequate in a “medium/high-precision” range,
say 100 - 1000 digits, given the considerable computation complexity as the num-
ber of terms increases. Therefore, a complete arbitrary-precision implementation
should combine the Franklin-Friedman expansion with other low-complexity meth-
ods described in this work.

Finally, further work is needed to compute uniform bounds for the coefficients
of the expansion in a wider regions of the parameters a and b, and to enhance the
algorithm to accelerate the computation of coefficients via efficient parallelization.
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