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Abstract

We examine the use of the Euler-Maclaurin formula and new derived uniform asymp-
totic expansions for the numerical evaluation of the Lerch transcendent Φ(z, s, a) for
z, s, a ∈ C to arbitrary precision. A detailed analysis of these expansions is accompanied
by rigorous error bounds. A complete scheme of computation for large and small values
of the parameters and argument is described along with algorithmic details to achieve
high performance. The described algorithm has been extensively tested in different
regimes of the parameters and compared with current state-of-the-art codes. An open
source implementation of Φ(z, s, a) based on the algorithms described in this paper is
available.

1 Introduction

The Lerch transcendent, also called Hurwitz-Lerch zeta function, which is named after the
Czech mathematician Mathias Lerch (1860 - 1922) is defined by means of the Dirichlet series
[1]

Φ(z, s, a) =

∞∑
k=0

zk

(k + a)s
, (1)

where Φ(z, s, a) is absolutely convergent for |z| ≤ 1, a /∈ Z−0 or <(s) > 1, |z| = 1 and
is defined elsewhere by analytic continuation. The Lerch transcendent serves as a unified
framework for the study of various particular cases of special functions in number theory
such as polygamma functions, polylogarithms, Dirichlet L-functions and certain number-
theoretical constants. The Lerch transcendent is related to Lipschitz-Lerch zeta function by
the functional equation

R(a, x, s) = Φ(e2πix, s, a).

This function was introduced and investigated by Lerch [22] and Lipschitz [23], where the
latter studied general Euler integrals including the Lerch zeta function. Subsequently, many
authors have studied properties of these functions. Among the recent investigations on the
analytic properties of Lerch zeta function, we remark the work conducted by Laurinčikas
and Garunkštis in [21].

The Lerch transcendent and their special cases are ubiquitous in theoretical physics.
They play a relevant role in particle physics, thermodynamics and statistical mechanics, be-
ing present, for instance, in Bose-Einstein condensation distribution [14] and integrals of the
Fermi-Dirac distribution. They also occur in quantum field theory, in particular in quan-
tum electrodynamic bound state calculations [17]. Regarding mathematical applications,
the Lerch zeta function can be used to evaluate Dirichlet L-series of the form

L(s, χ) =

∞∑
k=1

χ(k)

ks
,
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where χ : (Z/qZ)∗ → C is a Dirichlet character and q a natural number, thus the above sum-
mation is also expressible as a combination of Hurwitz zeta functions ζ(s, a) or polygamma
functions for s ∈ N

L(s, χ) =

q∑
r=1

χ(r)

∞∑
n=0

1

(r + nq)s
= q−s

q∑
r=1

χ(r)ζ(s, r/q).

The Lerch transcendent occasionally occurs in statistics, for instance, it provides an
analytic expression for the central moments of the geometric distribution.

Over the last two decades several authors have devised new series representations to ex-
tend the regime of computation of the Lerch transcendent. Complete asymptotic expansions
including error bounds of Φ(z, s, a) for large a and large z are derived in [9]. More recently,
an exponentially-improved expansion for the Lerch zeta function in large a asymptotic was
examined in [26]. A remarkable and extensive review of properties, identities and numerical
methods for the computation of the Lerch transcendent and their special cases was carried
out by R. Crandall in [5]. In addition, we mention two important convergent series: the
Hasse’s convergent series expansion in [15] given by

(1− z)Φ(z, s, a) =

∞∑
n=0

(
−z

1− z

)n n∑
k=0

(−1)k
(
n

k

)
(a+ k)−s,

which holds for s, z ∈ C with <(z) < 1/2 and Erdélyi-series representation [8]

zaΦ(z, s, a) =

∞∑
k=0

ζ(s− k, a)
logk(z)

k!
+ Γ(1− s)(− log(z))s−1,

where s is not a positive integer, and for parameter a ∈ (0, 1], | log(z)| < 2π, the series
representation is linearly convergent.

Finally, the Hermite-type integral representation is given by

Φ(z, s, a) =
1

2as
+

(− log(z))s−1

za
Γ(1− s,−a log(z))

+ 2

∫ ∞
0

sin(s arctan(t/a)− t log(z))

(a2 + t2)s/2(e2πt − 1)
dt, <(a) > 0. (2)

In this paper, we derive complete new uniform asymptotic expansions of Φ(z, s, a) for
large order of the parameters a, s and argument z, with special emphasis on the less in-
vestigated case <(z) � 0. The starting point for our asymptotic expansions is the integral
representation in (2). Additionally, a careful treatment of the Euler-Maclaurin formula is
considered along with the calculation of a rigorous error bound. A significant effort have
been made to develop uniform asymptotic expansions with tractable coefficients in terms of
known entities and amenable to arbitrary-precision computations. An extensive discussion
on algorithmic aspects for their successful implementation is also provided.

The outline of the paper is the following: in Section 2 we study the main numerical meth-
ods considered for the numerical evaluation of Φ(z, s, a), including error bounds. Then, in
Section 3, we discuss in detail implementation aspects, several heuristics and performance
issues. We also devise an effective algorithm that permits computation to arbitrary-precision
in an extensive region of the function’s domain. In Section 4, we provide numerical calcu-
lations and compare the present implementation with open source and commercial state-of-
the-art libraries. Finally, in Section 5, we discuss possible enhancements and present our
conclusions.
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2 Numerical methods

2.1 Euler-Maclaurin formula

We briefly summarized the Euler-Maclaurin formula and refer to [2] for a formal proof. We
closely follow the expository style in [19]. Let us suppose that f is an analytic function on
a closed domain [N,U ] where N,U ∈ Z, and let M be a positive integer. Let Bn denote
the n-th Bernoulli number and B̃2M (t) = Bn(t − btc) denote the n-th periodic Bernoulli
polynomials. The Euler-Maclaurin summation formula states that

U∑
k=N

f(k) = I + T +R (3)

where

I =

∫ U

N

f(t) dt (4)

T =
1

2
(f(N) + f(U)) +

M∑
k=1

B2k

(2k)!

(
f (2k−1)(N)− f (2k−1)(U)

)
(5)

R = −
∫ U

N

B̃2M (t)

(2M)!
f (2M)(t) dt . (6)

If f decreases sufficiently rapid, letting U →∞ the above equations remain valid.

Proposition 2.1 The Euler-Maclaurin summation formula for the Lerch transcendent is
given by

Φ(z, s, a) = S + I + T +R, (7)

where

S =

N−1∑
k=0

zk

(k + a)s
, (8)

I =
(− log(z))s−1

za
Γ(1− s,−(a+N) log(z)), (9)

T =
zN

(a+N)s

(
1

2
+

M∑
k=1

B2k

(2k)!

U(−2k + 1,−2k + 2− s,−(a+N) log(z))

(a+N)2k−1

)
, (10)

R = −
∫ ∞
N

B̃2M (t)

(2M)!

zt

(a+ t)s+2M
U(−2M,−2M + 1− s,−(a+ t) log(z)) dt . (11)

Proof: Let us first consider the Hermite-type integral in (2)

I :=

∫ ∞
0

sin(s arctan(t/a)− t log(z))

(a2 + t2)s/2(e2πt − 1)
dt . (12)

For z, s, a ∈ R, z > 0 and a > 0, the above integral can be written in the form

I =
1

as
=
(∫ ∞

0

z−it

(1− it/a)s
dt

e2πt − 1

)
. (13)

The domain delimited by previous constraints shall be extended by analytic continuation.
Now we express the integrand in (13) in terms of the confluent hypergeometric function
U(a, b, z) which yields

I =
1

as
=
(

(−a log(z))s
∫ ∞
0

e−i log(t)U(s, s+ 1, (it− a) log(z))

e2πt − 1
dt

)
, (14)
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By applying the addition theorem for U(a, b, z) [6, §13.13] given by

U(a, b, x+ y) = ey
∞∑
n=0

(−y)n

n!
U(a, b+ n, x), |y| < |x|. (15)

the integrand can be written as a summation defined by

e−i log(t)U(s, s+ 1, (it− a) log(z)) =

∞∑
k=0

(−it log(z))kU(s, s+ k + 1,−a log(z))

k!
. (16)

Substituting (16) into (14) and formally interchanging summation and integration we obtain

I =
1

as
=

(
(−a log(z))s

∞∑
k=0

(−i log(z))kU(s, s+ k + 1,−a log(z))

k!

∫ ∞
0

tk

e2πt − 1
dt

)
,

where the integral can be directly evaluated in closed form by∫ ∞
0

tk

e2πt − 1
dt =

k!

(2π)k+1
ζ(k + 1).

We use Kummer’s transformation U(s, s + k + 1,−a log(z))(−a log(z))k+s = U(−k, 1 −
k − s,−a log(z)) to rewrite I in the form

I =
1

as
=

( ∞∑
k=1

ik

ak
U(−k, 1− k − s,−a log(z))

(2π)k+1
ζ(k + 1)

)
. (17)

Note that the same summation formula can be derived by expanding f(t) = z−it(1 −
it/a)−s, which gives

f(t) =

∞∑
k=0

(
−it
a

)k
1

k!

∞∑
j=0

(
k

j

)
(−1)j(a log(z))k−j

j∑
m=0

(−1)j−ms(j,m)sm, (18)

where s(j,m) are Stirling numbers of the first kind. The inner summation in (18) is ex-
pressible in terms of rising factorial or Pochhammer’s symbol (s)j using the well-known
identities

j∑
m=0

(−1)j−ms(j,m)sm = (−1)j(−s)(j) = (s)j (19)

and
∞∑
j=0

(
k

j

)
(a log(z))k−j(−s)(j) = (−1)kU(−k, 1− k − s,−a log(z)). (20)

Finally, taking the imaginary part of (17) yields

I =
1

as

∞∑
k=0

(−1)k

a2k+1

U(−2k − 1,−2k − s,−a log(z))

(2π)2k+2
ζ(2k + 2)

=
1

2as

∞∑
k=1

B2k

(2k)!

U(−2k + 1,−2k + 2− s,−a log(z))

a2k−1
, (21)

where the relationship between Bernoulli numbers B2k and the Riemann zeta function is
applied. �
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Note that the expansion is convergent for | log(z)| < 2π. This can be observed by taking
the asymptotic estimate of the k-th term in (21)

|tk| =
∣∣∣∣ B2k

(2k)!

U(−2k + 1,−2k + 2− s,−(a+N) log(z))

(a+N)2k−1

∣∣∣∣
∼ 2

(2π)2k
| log(z)|2k−1, (22)

as N,M → ∞, where we consider the usual asymptotic estimates for U(a, b, z) ∼ z−a as
|z| → ∞ and |B2k|/(2k)! using the fact that ζ(2k) ∼ 1 as k →∞. To assess the domain of
convergence for z we use the ratio test (d’Alembert ratio test)

lim
k→∞

∣∣∣∣ tk+1

tk

∣∣∣∣ ∼ | log(z)2|
4π2

< 1⇐⇒ | log(z)| < 2π.

Finally, taking M such that <(s) + 2M − 1 > 0, the remainder term (11) in the Euler-
Maclaurin summation formula is well defined, giving its analytic continuation to s ∈ C\{1}.

Theorem 2.2 Given a, s, z ∈ C with | log(z)| < 2π and N,M ∈ N such that <(a) +N > 0
and <(s)+2M > 1, the error term (11) in the Euler-Maclaurin summation formula satisfies

|R| ≤ 4

(2π)2M

∣∣∣∣∣C
2M∑
k=0

(
2M

k

)
Q(k + 1− 2M − s,W )

(− log(z))−k−1+2M+s

log−k(z)

∣∣∣∣∣ , (23)

where C = Γ(1− s)/za, W = −(a+N) log(z) and Q(a, z) = Γ(a, z)/Γ(a) is the regularized
incomplete Gamma function.

Proof: We have

|R| =

∣∣∣∣∣
∫ ∞
N

B̃2M (t)

(2M)!

zt

(a+ t)s+2M
U(−2M,−2M + 1− s,−(a+ t) log(z)) dt

∣∣∣∣∣
≤

∣∣∣B̃2M (t)
∣∣∣

(2M)!

∣∣∣∣∫ ∞
N

zt

(a+ t)s+2M
U(−2M,−2M + 1− s,−(a+ t) log(z)) dt

∣∣∣∣
≤ 4

(2π)2M

∣∣∣∣∣
2M∑
k=0

(
2M

k

)
BMk (s)

∫ ∞
N

zt

(a+ t)s+2M
((a+ t) log(z))k dt

∣∣∣∣∣
with BMk (s) = (k + 1 − 2M − s)2M−k. We apply the usual upper bound for |B̃n(t)| <
4n!/(2π)n and formally interchange integration and the expansion of U(−2M,−2M + 1 −
s,−(a+N) log(z)) given by

U(−2M,−2M + 1− s,−(a+N) log(z)) =

2M∑
k=0

(
2M

k

)
BMk (s)((a+ t) log(z))k.

The integral above can be expressed in terms of the incomplete Gamma function Γ(a, z)
as follows (similar to (9))∫ ∞

N

zt

(a+ t)s+2M
((a+ t) log(z))k dt =

logk(z)

za
(− log(z))−k−1+2M+s

× Γ(k + 1− 2M − s,−(a+N) log(z)) (24)

Thus, we have

2M∑
k=0

(
2M

k

)
BMk (s)

∫ ∞
N

zt

(a+ t)s+2M
((a+ t) log(z))k dt

=
Γ(1− s)
za

2M∑
k=0

(
2M

k

)
Q(k + 1− 2M − s,−(a+N) log(z))

(− log(z))−k−1+2M+s

log−k(z)
,
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where we use BMk (s) = Γ(1− s)/Γ(k + 1− 2M − s). Note that for s ∈ N we take equation
(24) to avoid the pole. �

The bound given in Theorem 2.2 give us a notably tight approximation of remainder
(11). However, for large M the direct evaluation of the terminating series in (23) might be
substantially expensive, being a not negligible part of the total computation time, therefore
approximations for large order will be considered in Section 3.

2.2 Uniform asymptotic expansion for Φ(z, s, a)

A suitable Laplace-type integral representation of Φ(z, s, a) amenable to derive multiple
asymptotic expansions [5], is given by

Φ(z, s, a) =
1

Γ(s)

∫ ∞
0

ts−1e−at

1− ze−t
dt, <(s) > 1, <(a) > 0, z /∈ [1,∞), (25)

which serves to define the analytic continuation of the Lerch-series to z ∈ C \ [1,∞). This
integral has been chosen as starting point to derive asymptotic expansions for either large
or small a (assuming that s and z are fixed) or for large z in [9], and for a Bernoulli-series
representation as in [5]. The aim of this subsection is to extend the domain of computation of
the Poincaré type asymptotic expansion for large a defined in [9] by constructing a uniform
asymptotic expansion for large a, s and z.

We proceed to construct that expansion by using the vanishing saddle point method de-
scribed in [29]. This method is fundamentally a modification of Laplace’s method applicable
to integrals of the form

Fλ(z) =
1

Γ(λ)

∫ ∞
0

tλ−1e−ztf(t) dt, (26)

with <(λ) > 0 and z large, in which λ might also be large. The resulting expansion is given
by

Fλ(z) ∼
∞∑
k=0

ak(µ)Pk(λ)

zk+λ
,

where ak(µ) are the coefficients of the expansion of f(t) at the saddle point µ = λ/z and
coefficients Pk(λ) are expressible in terms of generalized Laguerre polynomials defined by

Pk(λ) = k!L−k−λk (−λ). (27)

At this point, we briefly recall the definition of the Eulerian polynomial and its connection
with the polylogarithm function before stating the next proposition.

The Eulerian polynomial is defined as

Ak(z) =

k−1∑
j=0

〈
k

j

〉
zj , (28)

where
〈
k
j

〉
are the Eulerian numbers [12]. The Eulerian polynomials satisfy the recurrence

equation

A0(z) = 1, Ak(z) =

k−1∑
j=0

(
k

j

)
Aj(z)(z − 1)k−1−j , k ≥ 1. (29)

The Eulerian polynomial and polylogarithm are related by the functional equation

Ak(z) =
(1− z)k+1

z
Li−k(z) =

(1− z)k+1

z

∞∑
j=1

jkzj , |z| < 1, (30)

and if |z| > 1 then Ak(z) = (−1)k+1Ak
(
1
z

)
.
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Proposition 2.3 For a, s, z ∈ C, <(a) > 0 and z /∈ [1,∞) we have the following uniform
asymptotic expansion for Φ(z, s, a)

Φ(z, s, a) =
eµ

eµ − z

(
1

as
+

K−1∑
k=2

(−1)k
Pk(s)

k!ak+s
rkAk

(
eµ

z

))
+ εK(z, s, a), (31)

where r = z/(eµ − z).

Proof: We take f(t) = (1 − ze−t)−1 and µ = s/a in (26), where µ is the saddle point of
the dominant part of the integral. Following closely the derivation in [9], we expand f(t) at
t = µ to obtain the Taylor expansion

f(t) =

∞∑
k=0

ak(µ)(t− µ)k, ak(µ) = (−1)k
eµzk

k!(eµ − z)k+1

k−1∑
j=0

〈
k

j

〉(
eµ

z

)j
. (32)

After performing a few algebraic manipulations we obtain the final representation for the
vanishing point expansion for Φ(z, s, a). �

We can clearly observe that for large values of <(s) and |z|, the asymptotic convergence
of the expansion improves. Furthermore, from a numerical perspective, moderate to large
values of <(s) < 0 permit the evaluation of Ak(eµ/z) via the convergent series (30).

It remains to bound the error term in the expansion after truncation at k = K − 1. Let
us consider the k-th term of expansion (31) defined as

|tk| =

∣∣∣∣∣ Pk(s)

k!ak+s

(
z

eµ − z

)k
Ak

(
eµ

z

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1

k!ak+s

(
z

eµ − z

)k∣∣∣∣∣ |Pk(s)|
∣∣∣∣Ak (eµz

)∣∣∣∣ .
A bound for the error term by comparison with a geometric series yields∣∣∣∣∣

∞∑
k=K

tk

∣∣∣∣∣ ≤ |tK |
1− C

, C =

∣∣∣∣ tK+1

tK

∣∣∣∣ , (33)

iff C < 1, where tK is the first omitted term in the expansion and

|εK(z, s, a)| ≤
∣∣∣∣ eµ

eµ − z

∣∣∣∣ |tK |1− C
.

In order to provide an effective upper bound for |tk|, we compute two saddle point bounds
for polynomials Pk(z) and Ak(z).

Proposition 2.4 For k > 1 and z ∈ C \ {1} the Eulerian polynomials satisfy the following
bound

|Ak(z)| ≤ k!
∣∣∣(z − 1)eφ(t0)

∣∣∣ , (34)

where

t0 =
W (ekkz)− k

z − 1
and φ(t0) = −k log t0 − log

(
z − e(z−1)t0)

)
,

and W (x) is the Lambert-W function which solves W (x)eW (x) = x.

Proof: An integral representation for the Eulerian polynomials is obtained after applying
Cauchy’s integral formula to the exponential generating function given by

∞∑
k=0

Ak(z)
tk

k!
=

z − 1

z − e(z−1)t
=⇒ Ak(z) =

k!(z − 1)

2πi

∮
t−k−1

z − e(z−1)t
dt,
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which can be written in the form

Ak(z) =
k!(z − 1)

2πi

∮
eφ(t)

t
dt, φ(t) = −k log t− log

(
z − e(z−1)t

)
.

We compute the saddle point of the integrand by solving the following equation

φ′(t) =
(z − 1)e(z−1)t

z − e(z−1)t
− k

t
, t0 =

W (ekkz)− k
z − 1

. (35)

The principal contribution of the saddle point bound is obtained by substituting t0 into the
integrand

|Ak(z)| ≤ k!

2πi

∣∣∣(z − 1)eφ(t0)
∣∣∣ ∮ dt

t
= k!

∣∣∣(z − 1)eφ(t0)
∣∣∣ .

Finally, by the residue theorem we obtain the result. �
A similar analysis is carried out for polynomials Pk(z). The use of the generating function

for generalized Laguerre polynomials gives the Cauchy-type integral representation

Pk(s) = k!L−k−sk (−s) =
k!

2πi

∫
C
(1− t)k+s−1ets/(1−t) dt

tk+1
, (36)

where C is a circle around the origin with a radius less than unity.

Proposition 2.5 For k > 1 and s ∈ C \ {0, 1} the polynomials Pk(s) satisfy the following
bound

|Pk(s)| ≤ k!
∣∣∣eφ(t0)∣∣∣ , (37)

where

t0 =

√
k2 + 4ks− 2k + 1 + k + 1

2(1− s)
and

φ(t0) = s
t0

1− t0
+ (k + s− 1) log(1− t0)− k log t0.

Proof: A proof follows the steps presented previously. �
Combination of both bounds (34) and (37) gives the final form for the error bound. The

selection of the appropriate truncation point K to achieve a desired level of precision is
detailed in Section 3.

2.3 Asymptotic expansion for large z

A careful reader shall have noticed that none of the previous series expansions are suitable
for arbitrarily large <(z) > 0. The expansion in this subsection complements the asymptotic
expansion described in [9] for z ∈ C \ [0,∞), <(a) > 0 and <(s) > 0 for large z and fixed a
and s

Theorem 2.6 For (a, b, z) ∈ C and <(a) > 0 we have an asymptotic expansion for large a
and z, and fixed s is given by

Φ(z, s, a) ∼ 1

2as
+

(− log(z))s−1

za
Γ(1− s,−a log(z))

+
1

2as

(
2

log(z)
− coth

(
log(z)

2

))
+

1

as

∞∑
k=1

(s)k
ak(2π)k+1

(
1

uk+1
− πk+1

k!
coth(πu)k−1 csch(πu)2Pk(sech(πu)2)

)
, (38)

where u = log(z)
2π and Pk(x) are peak polynomials [28].
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Proof: We start from the integral representation (13). Application of the binomial theorem
yields

I = =
(∫ ∞

0

z−it

(1− it/a)s
dt

e2πt − 1

)
= =

( ∞∑
k=0

(s)k
k!

(
i

a

)k ∫ ∞
0

z−ittk

e2πt − 1
dt

)
.

Let us focus on the inner integral Ik defined as

Ik =

∫ ∞
0

z−ittk

e2πt − 1
dt =

∫ ∞
0

z−ittk(1− e−t)
(1− e−t)(e2πt − 1)

dt .

Noting that (1−e−t)/(e2πt−1) = 1
2 (coth(πt)−1)(sinh(t)−cosh(t)+1), we split the integral

obtaining a closed form in terms of the Hurwitz zeta function

Ik = k!

(
ζ(k + 1, i log(z)/(2π))

(2π)k+1
− 1

(i log(z))k+1

)
=

k!

(2π)k+1
ζ

(
k + 1, 1 + i

log(z)

2π

)
.

For k = 0, ζ
(
k + 1, 1 + i log(z)2π

)
has a pole, so we proceed as follows

=
(∫ ∞

0

z−it

e2πt − 1
dt

)
= −

∫ ∞
0

sin(log(z)t)

e2πt − 1
dt =

1

4

(
2

log(z)
− coth

(
log(z)

2

))
.

Combining terms give us the asymptotic expansion for integral (13)

I ∼ 1

4

(
2

log(z)
− coth

(
log(z)

2

))
+

∞∑
k=1

(s)k
ak(2π)k+1

=
(
ikζ

(
k + 1, 1 + i

log(z)

2π

))
.

Hereinafter we use u = log(z)
2π to simplify notation. Let us define the terms Ck(u) as

Ck(u) = =
(
ikζ (k + 1, 1 + iu)

)
=
ik+1

2

(
(−1)kζ (k + 1, 1− iu)− ζ (k + 1, 1 + iu)

)
,

where we remove the imaginary part. In order to eliminate the computations on the complex
plane for real z, we expand1 Ck(u) reducing compound arguments. The first five coefficients
ck(u) = 2Ck(u) are

c1(u) =
1

u2
− π2 csch(πu)2,

c2(u) =
1

u3
− π3 coth(πu) csch(πu)2,

c3(u) =
1

u4
− π4

6

(
4 coth(πu)2 csch(πu)2 + 2 csch(πu)4

)
,

c4(u) =
1

u5
− π5

24

(
8 coth(πu)3 csch(πu)2 + 16 coth(πu) csch(πu)4

)
,

c5(u) =
1

u6
− π6

120

(
16 coth(πu)4 csch(πu)2 + 88 coth(πu)2 csch(πu)4 + 16 csch(πu)4

)
.

From the observation of previous coefficients, we state the following identity, which proof
follows by induction

Ck(u) =
1

2uk+1
− πk+1

2k!

dk/2e−1∑
j=0

P (k, j) coth(πu)k−1−2j csch(πu)2(j+1)

=
1

2uk+1
− πk+1

2k!
coth(πu)k−1 csch(πu)2

dk/2e−1∑
j=0

P (k, j) sech(πu)2j

=
1

2uk+1
− πk+1

2k!
coth(πu)k−1 csch(πu)2Pk(sech(πu)2).

1We employ FunctionExpand in Mathematica [30].
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where P (k, j) denotes the number of permutations of k numbers with j peaks, also known
as peak number or pk-number, and Pk(x) a pk-polynomial. �

Peak numbers P (k, j) give the sequence A008303 of the OEIS [27]. For k ≥ 1 and
0 ≤ j ≤ k, we have a functional recursion generating a triangular array

P (k, j) = 2(j + 1)P (k − 1, j) + (k − 2j)P (k − 1, j − 1). (39)

Note that P (k, j) = 0 for j ≥ k/2 and therefore degPk(x) = dk/2e − 1. Peak polynomials
are given by the generating function for peak numbers P (k, j).

Pk(x) =

dk/2e−1∑
j=0

P (k, j)xj .

Note that for values of |x| → 1 we can estimate its magnitude by the finite sum of peak

numbers, since
∑dk/2e−1
j=0 P (k, j) = k!, hence

|Pk(x)| ∼ k!, |x| → 1. (40)

The bivariate exponential generating function can be defined as in [10], [31]

∞∑
k=0

Pk(p)
xk

k!
= 1− 1

p
+

√
p− 1

p
tan

(
x
√
p− 1 + arctan(1/

√
p− 1)

)
=

√
1− p cosh(x

√
1− p)√

1− p cosh(x
√

1− p)− sinh(x
√

1− p)
=

1√
1− p coth(x

√
1− p)− 1

As customary in analytic combinatorics, application of Cauchy’s integral formula to the
bivariate exponential generating function gives

Pk(p) =
k!

2π

∫ 2π

0

e−ikt√
1− p coth(eit

√
1− p)− 1

dt .

A remarkable result from the theory of enriched P -partitions is the functional relation
between peak polynomials and Eulerian polynomials stated in [28]

Pk
(

4x

(1 + x)2

)
=

2k−1

(1 + x)k−1
Ak(x), (41)

which allows us to use the upper bound in (34) to estimate the truncation point in (38).
Furthermore, a good asymptotic estimate of Pk(x) for large order k can be derived from a
Mittag-Leffler type decomposition of Eulerian polynomials [4]:

Ak(z) = C(k, z)

 1

log(z)k+1
+

∞∑
j=1

1

(log(z) + 2πij)
k+1

+
1

(log(z)− 2πjk)
k+1

 ,

where

C(k, z) =
eπi(k−1)(1− z)k+1k!

z
.

Taking the prefactor of the expansion and applying the functional relation (41) we have

Pk(x) ∼ 2k−1k!eπi(k−1)(1− u)k+1

(1 + u)k−1u log(u)k+1
, u =

2− x− 2
√

1− x
x

, k →∞.
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3 Algorithmic details and implementation

In this section we discuss in detail the implementation aspects and several proposed heuristics
easy to evaluate while being effective in practice. All algorithms described are implemented
in Python2 using the mpmath library for arbitray-precision floating-point arithmetic [20]
with GMPY2, which supports integer and rational arithmetic via the GMP library [13] and
real and complex arithmetic by the MPFR [11] and MPC [7] libraries.

As it is well-known, numerical evaluation of special functions requires the use of several
methods of computation to cover the whole regime of the parameters. We aim to sketch
the building blocks of a basic algorithm, which have been tested to work reasonable well
for most cases, but we do not dare to claim that it will cover the whole function’s domain
optimally. For those cases either not covered by current series expansions or prone to
numerical instability, we select numerical complex integration, which serves as a backup
method.

3.1 Evaluation of L-series

The L-series of the form (1) are in general difficult to accelerate due to the non recursive
scheme of computation. In order to employ common acceleration techniques such as par-
allelization, the determination of the optimal truncation level is crucial. As described in
the previous section, a bound for the remainder term of the L-series can be constructed as
follows ∣∣∣∣∣

∞∑
k=K

zk

(k + a)s

∣∣∣∣∣ ≤ |z|K

|(K + a)s|(1− CK(z, s, a))
≤ |z|K

|(K + a)s|(1− |z|)
, (42)

where

CK(z, s, a) =

∣∣∣∣ z(K + a)s

(K + 1 + a)s

∣∣∣∣ , lim
K→∞

CK(z, s, a) = |z|. (43)

The required number of terms K to obtain a result with P -bit precision can be obtained
by performing a simple linear search, which is generally sufficient to target an absolute
error of about 2−P . However, a more efficient approximation of K is yielded by solving the
following equation with the first omitted term, zK(K+a)−s = 2−P for K. The first solution
in closed form is given by

K = −sW (φ(z, s, a, P )) + a log(z)

log(z)
, φ(z, s, a, P ) = − (2−P za)−1/s log(z)

s
.

We distinguish two different approximations for K, denoted as K̂, depending on <(s).
For <(s) > 0

K̂ =

[∣∣∣∣<(s)W0(φ1(z, s, a, P )) + |a| log(|z|)
log(|z|)

∣∣∣∣] ,
where [x] denotes the nearest integer function and

φ1(z, s, a, P ) = − (2−P |a|−<(s)−1|z||a|)−1/(<(s)+1) log(|z|)
<(s) + 1

.

For <(s) < 0

K̂ =

[∣∣∣∣<(s)W−1(φ2(z, s, a, P )) + |a| log(|z|)
log(|z|)

∣∣∣∣] ,
where

φ2(z, s, a, P ) = − (2−P |a|−<(s)|z||a|)−1/<(s) log(|z|)
<(s)

.

2https://sites.google.com/site/guillermonavaspalencia/software/lerch.py
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Given that φ1, φ2 ∈ R, we use the principal branch W0(z) = W (z) when <(s) > 0,
since φ1 > 0 and the branch W−1(z) for <(s) < 0, since φ2 ∈ (−1/e, 0). Remember that
W (x) is two-valued for −1/e ≤ x < 0. Numerical tests suggest that these approximations
for choosing K are sufficient to obtain good estimates of the required number of terms. We
note that K̂ can be computed using 53-bit machine floating-point arithmetic.

Several heuristics are implemented to compensate catastrophic cancellation for cases
when <(z) < 0 and/or <(s) < 0. In particular, for <(s) < 0 we increase the working
precision PW = P + bP/3c + [−<(s)]. On the other hand, for the case <(s) > 1 and
z ∈ R<0 we employ the linear acceleration methods for alternating series described in [3].
This method is used when K̂ > 1.2[1.31D], where D is the precision digits. For all other
cases, we add up to 20 guard bits to the working precision.

The computation of the L-series is particularly simple to parallelize by assigning a block
of size k : k ≤ N to each thread. This parallelization scheme is implemented using the
multiprocessing module in Python. Based on experiments, parallelization provides a
significant speedup factor for K̂ > 1024 or P ≥ 1024 bits.

We remark that L-series converges rather slowly when |z| → 1. It is possible to employ
convergence acceleration techniques to obtain an efficient evaluation of the Lerch transcen-
dent; see the application of combined nonlinear-condensation transformation in [16]. Alter-
natively, the Euler-Maclaurin formula is also convenient for those cases, as shown later.

3.2 Evaluation of Euler-Maclaurin formula

3.2.1 Evaluation of the error bound

For a precision of D digits, we choose N = bD/3c. For large <(a) > 0 we choose N = 0 if
the following condition is satisfied

<(a) > |<(s)|+ |<(z)|+D.

The number of terms M can be effectively approximated by solving tk = 2−P , where P
is the precision in bits and tk is the asymptotic estimate in (22), which yields

M ∼
[

1

2

∣∣∣∣ log(2−P−1 log(z))

log(2π)− log(log(z))

∣∣∣∣] .
This is a near-optimal approximation at high-precision. In practice, the asymptotic estimate
of M is used for P ≥ 500, otherwise we use the heuristic M = N+bP/3c. There is a unavoid-
able trade-off when choosing N and M , large values results in catastrophic cancellation since
the L-series might be unstable, especially for z ∈ C \ R, but reduces the number of terms
M , therefore the time spent computing Bernoulli numbers, which represents a significant
amount of the total computation time.

We can evaluate the coefficient in the error bound (23) using a recurrence. Computation
of Q(k+1−2M−s,−(a+N) log(z)) only requires the initial value Q(1−s,−(a+N) log(z)),
which can be computed re-using Γ(1− s,−(a+N) log(z)) in (10). Subsequent terms can be
computed at lower precision via the recurrence

Q(a, z) = Q(a− 1, z) +
e−zza−1

Γ(a)
, a ∈ C \ Z−,

or
Γ(a, z) = (a− 1)Γ(a− 1, z) + e−zza−1, a ∈ C.

A recurrence for the rest of terms in the coefficients is trivial. The direct evaluation of
the recurrence requires O(M) arithmetic operations, therefore the associated computational
cost is not negligible for very large M , as previously mentioned.
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For large M we might use asymptotic estimates to reduce the complexity, for example
the case M > |(a+N) log(z)|

|R| ∼ 4

(2π)2M

∣∣∣∣(−2M + 1− s)2ME2M+s(−(a+N) log(z))
(a+N)−2M−s+1

za+N

∣∣∣∣
∼ 4

(2π)2M

∣∣∣∣ (−2M + 1− s)2M
2M + s

(log(z)/z)a+N

(a+N)2M+s−1

∣∣∣∣ , (44)

where Eν(z) is the generalized exponential integral [24] and we take the asymptotic estimate
Eν(z) ∼ e−z/ν as ν →∞.

For M ∼ |(a + N) log(z)| and |s| � M , we use the first order estimate of the Franklin-
Friedman expansion for U(a, b, z) in [25] given by

U(−2M,−2M + 1− s,−(a+N) log(z)) ∼
(

1 +
2M

(a+N) log(z)

)−s
((a+N) log(z))2M ,

replacing it in (23) and after observation that the remaining integral is expressible in terms
of the incomplete gamma function we obtain

|R| ∼ 4

(2π)2M

∣∣∣∣ (− log(z))2M+s−1

3min(<(s),0)za
Γ(1− s,−(a+N) log(z)

∣∣∣∣ . (45)

Table 1 shows a few examples when |z| < 1, otherwise the integral (11) is not well defined.
Approximations (44) and (45), although being quite simple, might be used to compute a
crude estimate of the magnitude of the remainder in reasonable time.

z s a N M (11) (23) (44) (45)
0.8 3.2 10.5 6 15 7.5e−30 1.5e−28 1.3e−38 1.1e−47

0.5 + 0.2i -30.2 -i 10.5 +5i 10 40 4.8e−24 1.0e−22 8.1e−37 3.2e−20
0.5 + 0.2i -30.2 -i 100.5 +5i 100 2000 2.5e+302 5.6e+302 3.9e+282 −
0.5 + 0.7i -3.2 +10i 10.5 + 5i 250 300 1.6e−503 4.8e−502 1.5e−503 5.4e−496
0.5 + 0.7i 30.2 +10i 10.5 + 10.5i 600 700 9.9e−1240 1.2e−1238 7.5e−1216 3.8e−1264

Table 1: Effectiveness of bound (23) in error term of the Euler-Maclaurin formula.

3.2.2 Evaluation of the tail

A more interesting form of the tail (10) is obtained by applying Kummer’s transformation
to U(−2k + 1,−2k + 2− s,−(a+N) log(z)), thus

T = zN
(

1

2(a+N)s
+ (− log(z))s

M∑
k=1

B2k

(2k)!
(− log(z))2k−1U(s, s+ 2k,−(a+N) log(z))

)
.

For this particular case, U(a, b, z) reduces to a polynomial in −(a + N) log(z) of degree
2k − 1, indeed expressible in terms of generalized Laguerre polynomials, given by

U(s, s+ 2k,−(a+N) log(z))) = (−(a+N) log(z))−s
2k−1∑
j=0

(
2k − 1

j

)
(s)j

(−(a+N) log(z))j︸ ︷︷ ︸
T

(k)
2

.

Terms T
(k)
2 can be constructed using a linear holonomic recurrence equation. Let us define

the constants expressions p and q

p = s− (a+N) log(z)), q = − 1

(a+N) log(z)
.
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The sequence of terms T
(k)
2 satisfy the recurrence equation

T
(k)
1 = [pT

(k−1)
2 + (2k − 3)(T

(k−1)
2 − T (k−1)

1 )]q

T
(k)
2 = [pT

(k)
1 + (2k − 2)(T

(k)
1 − T (k−1)

2 )]q

for k ≥ 2, with initial values

T
(1)
1 = 1, T

(1)
2 = 1− s

(a+N) log(z)
.

A matrix form for k ≥ 2 is defined as T
(k)
1

T
(k)
2

T
(k−1)
2

 =

q(p+ 2k − 3) q(3− 2k) 0
q(2− 2k) 0 q(p+ 2k − 2)

1 0 0


T

(k−1)
2

T
(k−1)
1

T
(k)
1


or simply(

T
(k)
2

T
(k)
1

)
= q

(
k(4k + 4p− 12) + (p− 5)p+ 8 k(−4k − 2p+ 10) + 3p− 6

3− 2k p+ 2k − 3

)(
T

(k−1)
2

T
(k−1)
1

)
.

The complexity of the recurrence scheme is O(MP ) and requires a small temporary

storage. Note that a matrix recurrence for the sequence of coefficients T
(k)
∗ is suitable in a

binary splitting scheme. The previous analysis results in a more tractable expression for the
tail T

T =
zN

(a+N)s

(
1

2
+

M∑
k=1

B2k

(2k)!
(− log(z))2k−1T

(k)
2

)
. (46)

Now the terms of tail sum T satisfy a recurrence equation except for the multiplication
by Bernoulli numbers. The Bernoulli numbers are cached for repeated evaluation, but com-
puting them the first time at very high precision is time-consuming. We do not attempt to
improve current implementations but rather rely on the algorithm implemented in mpmath,
which automatically caches Bernoulli numbers Bn when n < 3000 for multiple evaluations.
For larger values of n the connection to Riemann zeta function ζ(n) is used. Many recursive

algorithms for computing B0, . . . , Bn such as Bn = −
∑n−1
k=0

Bk
k!(n−k+1) require O(n2) arith-

metic operations. As an alternative, an algorithm based on recycling terms in the Riemann
zeta function series expansion, which also have cubic complexity, is implemented in [18].

3.3 Evaluation of asymptotic expansions

The main drawback of the asymptotic expansions in (31) and (38) is the difficulty of com-
puting a large number of Eulerian and peak polynomials efficiently. Computing the first k
Eulerian polynomials simultaneously can be performed by using the recursion in (29). Thus,
given A0(z), . . . , Ak−1(z), we can compute Ak(z) in O(k) arithmetic operations, and noting
that Ak(z) has O(k log k) bits from (34), the algorithm needs O(k3+o(1)) bit operations and
requires O(k2 log k) space to store previous Aj(z), j < k. For example, using a straightfor-
ward implementation, we compute A0(2), . . . , A1000(2) at 333-bit precision in 1.51 seconds
on a 2.6 GHz Intel i7 processor.

To compute k Eulerian polynomials in time complexity O(k2+o(1)) we might apply a
multisectioning scheme to the bivariate exponential generating function. Alternatively, it
is possible to recycle terms of the sum (30) to speedup multievaluation, considering that
terms jkzj can be optimized to only compute binary exponentiation when j is prime and
multiplication otherwise. The required number of terms is approximated by solving JkzJ =
2−P ,

J∗ ≈

∣∣∣∣∣∣<
−kW−1

(
− (2−P )1/k log(|z|)

k

)
log(|z|)

∣∣∣∣∣∣
 . (47)
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For large k the size of J∗ growth rapidly, therefore it is convenient to apply asymptotic
faster methods such as the Mittag-Leffler type decomposition introduced in §2.3, which acts
as an asymptotic expansion. For z ∈ R, two optimizations can be implemented:

Ak(z) =
(z − 1)k+1k!

z
<

 1

log(z)k+1
+ 2

∞∑
j=1

1

(log(z) + 2πij)
k+1

 , z ∈ R+,

Ak(z) =
(z − 1)k+1k!

z
<

 1

log(z)k+1
+

∞∑
j=1

1

(log(z)− 2πij)
k+1

 , z ∈ R−.

To compute a single A1000(1/5) at 333-bit, the power series requires J∗ = 5545 whereas
the Mittag-Leffler decomposition only needs J∗ = 59 terms, hence a complete algorithm
shall combine the iterative computation via the three-term recurrence and the asymptotic
expansion as k →∞.

Like other orthogonal polynomials, polynomials Pk(λ) in (27), which are strongly related
to Tricomi-Carlitz polynomials, satisfy three-term recurrence,

P0(λ) = 1, P1(λ) = 0, and Pk+1(λ) = k(Pk(λ) + λPk−1(λ)), k > 1.

Given the complexity of computing a large number of Eulerian polynomials, the cost of the
three-term recurrence is almost negligible.

The truncation level K in (33) is computed at lower precision via linear search and C is
estimated as

C =

∣∣∣∣ tK+1

tK

∣∣∣∣ ∼ ∣∣∣∣ z

z − eµ
(s+K)(z − 1)

a log(z)

∣∣∣∣ , k →∞,

from which we obtain an estimate of the number of terms

Kmax ≈
∣∣∣∣a log(z)(z − eµ)

z(z − 1)
− s
∣∣∣∣ .

Computation of peak polynomials is carried out using the generating function for peak
numbers for moderate k, which evaluation only involves roughly half of the terms k/2 com-
pared to the Eulerian polynomials. For example, computing the triangular array for the
first 1000 peak numbers using recurrence (39) takes 1.55 seconds. For larger k the func-
tional relation with the Eulerian polynomial is applied. A trickier aspect of the asymptotic
expansion (38) is to determine the optimal truncation K. The coefficients ck(u) behave as

|ck(u)| =
∣∣∣∣ 1

uk+1
− πk+1

k!
coth(πu)k−1 csch(πu)2Pk(sech(πu)2)

∣∣∣∣ ∼ 1

|1− iu|k
,

as k →∞. Given the ratio of convergence of the asymptotic expansion, we can estimate the
maximum number of terms Kmax, thus the maximum attainable accuracy as follows∣∣∣∣ tK+1

tK

∣∣∣∣ ∼ ∣∣∣∣ (s+K)

a2π(1− iu)

∣∣∣∣ , k →∞, Kmax ≈ |a(2π − i log(z))− s|.

It remains to estimate the required numbers of terms K to target P -bit accuracy, which is
approximated heuristically and subsequently refined via linear search using

K ≈

∣∣∣∣∣∣ ϕ(s)

W−1( ϕ(s)
a2π log(z) )

∣∣∣∣∣∣
 ,

where ϕ(s) = − log(2)P − log(1 + s). In fact, we slightly increase K by a factor ≈ 1.2,
which works well in practice. Hence, we can evaluate the asymptotic expansion as long as
K ≤ Kmax to target an absolute error of 2−P .
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3.4 Numerical integration

The current implementation in mpmath computes the Lerch transcendent via numerical
integration using the double-exponential method for the integral representation (2) employ-
ing the quad function. We choose numerical integration for <(a) > 0 as a backup method
when computation by aforementioned methods is not satisfactory. Note that a few optimiza-
tions are possible for real parameters by rewriting the integrand, for example, the integral
representation (13) when z > 0 and a > 0 or

I = −=
(∫ ∞

0

(1− it/a)szit

(a2 + t2)s/2(1 + t2/a2)s/2
dt

(e2πt − 1)

)
, z, s, a ∈ R, z > 0,

both integral representations avoiding evaluation of trigonometric functions. The computa-
tion at high-precision, say 1000 digits onwards, is generally costly compared to asymptotic
methods, therefore this is the method of choice when only strictly indispensable.

4 Benchmark

In this Section, we benchmark our implementation to current state-of-the-art software sup-
porting evaluation of the Lerch transcendent function to arbitrary-precision. Tests were
conducted on an Intel(R) Core(TM) i7-6700HQ CPU at 2.60GHz, using up to 4 cores for
parallel mode, running Ubuntu Linux. We compare the computing times of Mathematica
10.4 and mpmath 1.0.0 using functions Timing[] and time.perf counter(), respectively.
For mpmath we set the precision in bits p using mpmath.mp.prec = p, whereas for Mathe-
matica the desired level of precision in digits d is set with N[..., d], applying the conversion
factor d = b0.301pc. To assess the correctness of our implementation, we compare to Mathe-
matica at higher precision since it is frequently faster and more reliable than mpmath. Note,
however, that Mathematica attempts to achieve d digits of precision might fail unexpectedly,
therefore we check the consistency of results at increasing levels of precision.

The following tables show timing results to compute the Lerch transcendent for vari-
ous regimes of the parameters and argument, varying the level of precision. We remark
that Mathematica and mpmath use GMP internally, so timing measurements are directly
comparable.

Table 2 shows the performance of the Euler-Maclaurin formula (21) for small z and
moderate values of s and a. The Euler-Maclaurin formula is implemented in a loop manner
checking the level of cancellation at each iteration and increasing the working precision ac-
cordingly to correct it. Hence, a better estimation of the total amount of cancellation would
reduce the computation time considerably. However, as we see for these cases, both Mathe-
matica and mpmath are regularly an order of magnitude slower. Furthermore, as previously
noted, larger values of |a| improve the convergence of the series, reducing significantly the
number of terms N and M ; Table 3 shows the metrics corresponding to the last iteration.
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Φ(z, s, a) bits mpmath Mathematica Euler-Maclaurin Parallel
64 0.096 (0.139) 0.313 0.008 (0.013) -

z = 2.5 + 1.5i 333 1.09 (1.21) 0.672 0.041 (0.089) -
s = 1.25 + 2i 1024 8.39 (9.38) 3.14 0.128 (0.233) -
a = 3.5 + 5i 3333 154.4 (161.1) 27 1.64 (2.37) -

10000 1564.6 438 25.04 (33.33) 19.06 (27.32)
64 0.263 (0.295) 0.047 0.016 (0.039) -

z = 2.5 + 7.5i 333 1.79 (1.98) 0.250 0.110 (0.250) -
s = −50.25 + 10i 1024 6.59 (7.05) 1.58 0.72 (1.49) -

a = 1.5− i 3333 133.6 (135.1) 21.66 11.83 (16.64) 8.72 (13.22)
10000 1453 409.1 190.3 (224.5) 153.2 (196.5)

64 0.253 (0.324) 0.031 0.013 (0.022) -
z = 2.5 + 0.5i 333 1.79 (1.92) 0.265 0.058 (0.104) -

s = −100.25 + 10i 1024 12.66 (13.94) 7.72 0.298 (0.685) -
a = 100.5− 10i 3333 120.7 (127.1) 83.14 2.97 (4.19) -

10000 1500.6 > 1800 24.65 (32.89) 18.88 (28.34)

Table 2: Time (in seconds) to compute Φ(z, s, a) with moderate values of z, s and a to
64, 333, 1024, 3333 and 10000 bits of precision. First evaluation pre-computing Bernoulli
numbers within parentheses. Maximum time 1800 seconds.

Current implementation does not incorporate complexity-reducing methods for the eval-
uation of the tail but simply uses the recurrence scheme and only includes optional paral-
lelization of the truncated L-series, thus limiting the observable improvement by activating
the parallel mode.

Φ(z, s, a) bits N M PW (bits)
64 7 32 (H) 86

z = 2.5 + 1.5i 333 39 172 (H) 400
s = 1.25 + 2i 1024 123 247 (A) 1229
a = 3.5 + 5i 3333 401 805 (A) 4000

10000 1203 2416 (A) 12000
64 28 122 (H) 84

z = 2.5 + 7.5i 333 127 402 (A) 383
s = −50.25 + 10i 1024 364 1146 (A) 1094

a = 1.5− i 3333 1115 3503 (A) 3346
10000 3193 10032 (A) 10419

64 10 46 (H) 108
z = 2.5 + 0.5i 333 52 97 (A) 528

s = −100.25 + 10i 1024 156 285 (A) 1561
a = 100.5− 10i 3333 480 876 (A) 4790

10000 1214 2216 (A) 12108

Table 3: Number of terms N , M in the Euler-Maclaurin expansion and working precision
PW for Euler-Maclaurin cases. (A) and (H) indicate the method used to estimate M ,
asymptotic and heuristic, respectively.

Table 4 assesses the performance of the L-series implementation and its particular cases
for |z| < 1 and small values of s and a. Due to the performance gap between Mathematica
and mpmath (mpmath only implements numerical integration), only the former is used for
benchmarking on subsequent tests. Results show that our implementation is comparable to
Mathematica (presumably evaluating the same L-series) at lower precision and it is found
to be surprisingly faster at higher precision3. Moreover, we observe that our parallelization
scheme achieves speedup ratios close to theoretical maximum, which apparently is not imple-

3We guess the poor performance is due to incorrect error tracking, which overestimates the required
working precision.
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mented in Mathematica. Interestingly, the Euler-Maclaurin formula should be the preferred
algorithm at low-medium precision when |z| ∼ 1.

Φ(z, s, a) bits Mathematica L-series Parallel Euler-Maclaurin
64 0.0011 0.0011 - -

z = 1/4 333 0.0067 0.0055 - -
s = 10/4 1024 0.0339 0.0155 - -
a = 20/7 3333 0.7313 0.0660 0.0431 -

10000 21.406 0.4885 0.1513 -
64 0.0015 0.0069 - 0.0031 (0.0053)

z = 9/10 333 0.0109 0.0607 0.0429 0.0153 (0.0255)
s = 10/4 1024 0.0984 0.2165 0.1052 0.0166 (0.0222)
a = 20/7 3333 1.8843 1.0422 0.3281 0.0953 (0.1197)

10000 39.937 8.6969 2.4881 2.7331 (3.1578)
64 0.0031 0.0020 - -

z = −6/10 333 0.0156 0.0083 - -
s = 10/4 1024 0.1422 0.0243 - -
a = 20/7 3333 3.0922 0.0983 - -

10000 21.2969 0.7500 - -

Table 4: Time (in seconds) to compute Φ(z, s, a) for small argument |z|.

The third example assesses the performance of the series acceleration technique for al-
ternating series, which while it is hardly parallelizable, it is consistently faster than Mathe-
matica for all tested instances.

Table 5 shows the time to compute the Lerch transcendent using the asymptotic ex-
pansion (38) for large z and a. The optimal truncation of the first test is Kmax = 1598,
limiting the evaluation at 3333 bits of precision, which would require K = 2767. The op-
timal truncation for the second test is Kmax = 22297 requiring up to 1952 terms at 10000
bit of precision. As noted, the time spent on the computation of a large number of peak
polynomials accounts for a significant amount of the total time, therefore a more sophisti-
cated and efficient algorithm would be needed at higher precision. On the other hand, for
multiple evaluations, peak numbers can be cached same as Bernoulli numbers.

Numerical experiments show a performance deterioration of the Euler-Maclaurin formula
as z increases due to catastrophic cancellation, therefore its use should be restricted to
low precision calculations. Our implementation of the asymptotic expansion exhibits fast
convergence for large parameters, but the limitation on the achievable accuracy forces a
switch to numerical integration depending on the desired level of precision.

Φ(z, s, a) bits mpmath Mathematica Euler-Maclaurin Asymptotic K peak time
z = 140 64 0.0684 0.0154 0.0027 0.0022 9 6.3%
s = 1/4 333 0.7859 0.1219 2.2342 0.0134 59 10.9%
a = 200 1024 5.0361 0.7297 - 0.1931 254 10.5%

64 0.1238 0.0661 - 0.0017 6 4.6%
z = 10000 333 1.5456 0.2078 - 0.0066 34 11.5%
s = 10/4 1024 9.9478 1.0406 - 0.0481 122 10.0%
a = 2000 3333 94.362 15.141 - 0.9498 493 8.4%

10000 1978.2 283.21 - 39.779 1952 6.0%

Table 5: Time (in seconds) to compute Φ(z, s, a) for large parameter a and argument z.
Comparison to Euler-Maclaurin at low precision. The rightmost column shows the percent-
age of the total time devoted to computation of K peak numbers.

Finally, Table 6 compares the uniform asymptotic expansion (31) to the asymptotic ex-
pansion (38). Results show that the former expansion should be the preferred choice at
low-medium precision for sufficiently large parameters and argument, otherwise the previ-
ous methods generally show superior performance. Note that the computation of Eulerian
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polynomials accounts for the majority of the total time, consequently any improvement on
this respect will directly reduce the reported timings.

Φ(z, s, a) bits mpmath Mathematica Asymptotic Uniform Eulerian time
z = −200.65 64 0.0228* 0.0469 0.0031 (16) 0.0173 (20) 97.0%
s = 100.25 333 0.0149* 0.1563 0.0412 (104) 0.0592 (60) 97.5%
a = 501.5 1024 1.0219** 0.8438 0.7512 (421) 0.5151 (229) 98.8%
z = −20000 64 0.0101* 0.0312 0.0027 (15) 0.0051 (9) 93.2%
s = 100.25 333 0.0168* 0.1875 0.0362 (93) 0.0436 (53) 96.9%
a = 501.5 1024 1.7736 1.0313 0.5424 (365) 0.2964 (196) 98.3%

Table 6: Time (in seconds) to compute Φ(z, s, a) for large parameter a and s, and argument
z. Number of terms for each expansion within parentheses. For mpmath: (*) and (**)
indicate no answer and inaccurate answer, respectively.

5 Discussion

The algorithms presented in this work are an important step towards a complete arbitrary-
precision implementation of the Lerch transcendent using asymptotically fast methods. A
fundamental improvement to our implementation is to devise a more intelligent strategy to
address cancellation issues for the Euler-Maclaurin formula, which should yield a significant
reduction of the current overhead factor.

Further work is needed to develop an efficient multithreaded implementation of the
asymptotic expansions. More importantly, it remains an open problem whether there is
a fast memory-efficient algorithm for computing a large number of Eulerian and peak poly-
nomials.
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